
UNIVERSITY OF CALIFORNIA SAN DIEGO

Mechanizing Refinement Types

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Michael H. Borkowski

Committee in charge:

Professor Ranjit Jhala, Chair
Professor Samuel R. Buss
Professor Cormac Flanagan
Professor Nadia Polikarpova
Professor Victor Vianu

2024

Copyright

Michael H. Borkowski, 2024

All rights reserved.

The dissertation of Michael H. Borkowski is approved, and it

is acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2024

iii

DEDICATION

To Kiyoshi, Daikichi, and Ziggy

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1
1.1 Outline . 2
1.2 Related Work . 4

Chapter 2 Refinement Types . 8
2.1 The goal of Refinement Types . 8
2.2 The Essence of Refinement Types 11
2.3 The Design of Refinement Types 11

2.3.1 Semantic Subtyping . 12
2.3.2 Decidability . 13
2.3.3 Polymorphism . 15

2.4 The Soundness of Refinement Types 16

Chapter 3 The Languages λF and λRF . 21
3.1 Syntax . 21
3.2 Dynamic Semantics . 23
3.3 Static Semantics . 26

3.3.1 Well-formedness . 26
3.3.2 Typing . 28
3.3.3 Subtyping . 32
3.3.4 Implication . 33

Chapter 4 λF Soundness . 38
4.1 Static Semantics . 39
4.2 Metatheory for λF . 39

4.2.1 Progress . 41

v

4.2.2 Preservation . 45

Chapter 5 Soundness of λRF . 52
5.1 Denotational Soundness . 53
5.2 Type Safety . 54
5.3 Inversion of Typing Judgments . 55
5.4 Substitution Lemma . 56
5.5 Narrowing . 57

Chapter 6 LIQUIDHASKELL & Refined Data Propositions 59
6.1 LIQUIDHASKELL . 59
6.2 Refined Data Propositions . 61

Chapter 7 Implementation and Mechanization . 65
7.1 LIQUIDHASKELL Mechanization 65

7.1.1 Quantitative Results . 66
7.2 COQ Mechanization . 68

Chapter 8 Comparison of Proof Assistants . 69
8.1 Proving Theorems in LIQUIDHASKELL 69

8.1.1 SMT Solvers, Arithmetic, and Set Theory 69
8.1.2 Co-finite Quantification 71
8.1.3 Inductive Proofs as Recursive Functions 72

8.2 COQ vs. LIQUIDHASKELL . 74

Chapter 9 Lists: The Language λRFD . 79
9.1 Syntax and Semantics . 79

9.1.1 Subtyping . 84
9.1.2 Denotational Semantics 86

9.2 Metatheory of Lists . 86
9.3 Implementation . 87

Chapter 10 Conclusions & Future Work . 89

vi

LIST OF FIGURES

Figure 2.1: Functional Arrays with refinement types that ensure safe indexing. 9
Figure 2.2: Dependencies of Typing Judgements in Refinement Types. (Dashed lines do

not exist in our formalism.) . 17

Figure 3.1: Syntax of Primitives, Values, and Expressions. 22
Figure 3.2: Syntax of Types. The gray boxes are the extensions to λF needed by λRF .

We use τ for λF -only types. 22
Figure 3.3: The small-step semantics. 24
Figure 3.4: Type substitution and refinement strengthening. 25
Figure 3.5: Well-formedness of types and environments. The rules for λF exclude the

gray boxes. 28
Figure 3.6: Typing rules. The judgment Γ ⊢F e : τ is defined by excluding the gray boxes. 29
Figure 3.7: Subtyping Rules. 33
Figure 3.8: Denotations of Types and Environments. 36

Figure 4.1: Well-formedness of λF types. 39
Figure 4.2: Unrefined typing rules. 40

Figure 5.1: Dependencies in the metatheory. We write “var” and “tv” to resp. abbreviate
term and type variables. 53

Figure 8.1: Encoding of Co-finitely Quantified Rules. 72

Figure 9.1: Syntax of Primitives, Values, and Expressions. 80
Figure 9.2: Syntax of Types. The gray boxes are the extensions to λF needed by λRFD. 80
Figure 9.3: The small-step semantics for λRFD. 81
Figure 9.4: Well-formedness of λRFD types. The rules for λF exclude the gray boxes. . 82
Figure 9.5: Typing rules. The judgment Γ ⊢F e : τ is extended by excluding the gray boxes. 83
Figure 9.6: Subtyping Rules. 84
Figure 9.7: Denotations of Types and Environments. 86

vii

LIST OF TABLES

Table 7.1: Quantitative mechanization details. We split each development into sets of
modules pertaining to regions of Figure 5.1 and for each we count lines of
specification (definitions, lemma statements) and of proof. 67

Table 9.1: Comparative mechanization details for λRF versus λRFD. 88

viii

ACKNOWLEDGEMENTS

First, I would like to thank Ranjit Jhala for all of his support as my advisor. I am greatly

indebted to Ranjit for taking me on as his student when I was a complete beginner at type theory

and software verification research. He provided the original motivation for my work in his 2019

graduate class on LIQUIDHASKELL, and I’ve been hooked on theorem proving ever since. I

appreciate Ranjit’s insights and feedback during our meetings and, most of all, his continuing

confidence in my work throughout four conference rejections motivated me to keep improving

and adding to our work.

I would also like to thank my collaborator and coauthor Niki Vazou for all of her patient

help, support, and ideas. I couldn’t have done this research without her support either! I want to

thank each of the members of my committee, Nadia Polikarpova, Victor Vianu, Sam Buss, and

Cormac Flanagan for their support through this process and for the opportunity to TA for some of

their classes as well.

I want to thank my wife Ashley and our sons Kiyoshi, Daikichi, and Zygmunt for

their patience and support for the many hours that I spent away from them working on the

mechanizations and on this dissertation.

I want to thank my fellow PL students for many helpful conversations, and especially

Saketh Kasibatla, Kyle Thompson, and Cole Kurashige for helpful conversations about COQ and

theorem proving. I also thank James Parker for a helpful discussion about data propositions and

the anonymous reviewers across five conferences for their useful comments and suggestions. I

owe a debt of gratitude to Joe Politz and Sorin Lerner for detailed comments and feedback on an

early version of my POPL 24 talk.

ix

Work adapted in this dissertation

Chapters 1-3, 5-8, and the conclusion are adapted from “Mechanizing Refinement Types”

in the proceedings of the 51st ACM SIGPLAN Symposium on Principles of Programming

Languages (POPL 2024), by Michael Borkowski, Niki Vazou, and Ranjit Jhala.

Chapter 4 is adapted from unpublished material that was originally prepared for the same

“Mechanizing Refinement Types” by Michael Borkowski, Niki Vazou, and Ranjit Jhala but did

not appear in the final published version.

Chapter 9 describes unpublished work done in collaboration with Ranjit Jhala.

The dissertation author was the primary investigator and author of these works.

x

VITA

2016 B. A. in Computer Science magna cum laude, Amherst College

2019 M. S. in Computer Science, University of California San Diego

2024 Ph. D. in Computer Science, University of California San Diego

PUBLICATIONS

M. H. Borkowski, N. Vazou, and R. Jhala, “Mechanizing Refinement Types”, POPL, 2024.

xi

ABSTRACT OF THE DISSERTATION

Mechanizing Refinement Types

by

Michael H. Borkowski

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Ranjit Jhala, Chair

Practical checkers based on refinement types use the combination of implicit semantic

subtyping and parametric polymorphism to simplify the specification and automate the verifica-

tion of sophisticated properties of programs. However, a formal metatheoretic accounting of the

soundness of refinement type systems using this combination has proved elusive. We present

λRF , a core refinement calculus that combines semantic subtyping and parametric polymorphism.

We develop a metatheory for this calculus and prove soundness of the type system. We give two

mechanizations of our metatheory. First, we introduce data propositions, a novel feature that

enables encoding derivation trees for inductively defined judgments as refined data types, and use

them to show that LIQUIDHASKELL’s refinement types can be used for mechanization. Second,

xii

we mechanize our results in COQ, which comes with stronger soundness guarantees than LIQUID-

HASKELL, thereby laying the foundations for mechanizing the metatheory of LIQUIDHASKELL.

Finally, we present an extension λRFD, which adds lists and a length measure. We extend the

metatheory to prove the soundness of the extended type system and give another mechanization

in COQ.

xiii

Chapter 1

Introduction

Refinements constrain types with logical predicates to specify new concepts. For example,

the refinement type Pos
.
= Int{ν : 0 < v} describes positive integers and Nat

.
= Int{ν : 0 ≤ v}

specifies natural numbers. Refinement types have been successfully used to specify various

properties like secrecy [17], resource usage [25], or information flow [28] that can then be verified

in programs developed in various programming languages like Haskell [51], Scala [22], and

Racket [24].

The success of refinement types relies on the combination of two essential features. First,

implicit semantic subtyping uses semantic (SMT-based) reasoning to automatically convert the

types of expressions without hassling the programmer for explicit type casts. For example,

consider a positive expression e : Pos and a function expecting natural numbers f : Nat→ Int.

To type check the application f e, the refinement type system will implicitly convert the type

of e from Pos to Nat, because 0 < v ⇒ 0 ≤ v holds semantically. Importantly, refinement types

propagate semantic subtyping inside type constructors to, for example, treat function arguments in

a contravariant manner. Second, parametric polymorphism allows the propagation of the refined

types through polymorphic function interfaces, without the need for extra reasoning. As a trivial

example, once we have established that e is positive, parametric polymorphism should let us

1

conclude that g e : Pos if, for example, g is the identity function g : a → a. As a more interesting

example, in § 2.1 we combine semantic subtyping and polymorphism to verify a safe-indexing

array of prime numbers.

The engineering of practical refinement type checkers has galloped far ahead of the

development of their metatheoretical foundations. In fact, semantic subtyping is very tricky as

it is mutually defined with typing, leading to metatheoretic proofs with circular dependencies

(Figure 2.2). Unsurprisingly, the addition of polymorphism poses further challenges. As Sekiyama

et al. [44] observe, a naïve definition of type instantiation can lose potentially contradicting

refinements leading to unsoundness. Existing formalizations of refinement types drop semantic

subtyping [44, 22] or polymorphism [15, 48], or have problematic metatheory [4].

1.1 Outline

In this dissertation we formalize λRF , a core calculus with a refinement type system that

combines semantic subtyping with polymorphism, via five concrete contributions. But first, we

begin in Chapter 2 with an overview of refinement types, giving examples of their applications and

discussing their essential features. We conclude the chapter in § 2.4 by outlining the challenges

we encountered in attempting to prove the soundness of λRF and how we addressed each of them.

1. Reconciliation In Chapter 3 we introduce our first contribution: a language that

combines refinements and polymorphism in a way that ensures the metatheory remains sound

without sacrificing the expressiveness needed for practical verification. To this end, λRF introduces

a kind system that distinguishes the type variables that can be soundly refined (without the risk

of losing refinements at instantiation) from the rest, which are then left unrefined. In addition,

our design includes a form of existential typing [26] which is essential to synthesize the types –

in the sense of bidirectional typing – for applications and let-binders in a compositional manner

(§ 2.3.2, § 3.3).

2

2. Foundation Our second contribution, described in Chapter 5, is to establish the

foundations of λRF by proving soundness, which says that well-typed expressions cannot get

stuck and belong to the denotation of their type (§ 5.1, § 5.2). The combination of semantic

subtyping, polymorphism, and existentials makes the soundness proof challenging with circular

dependencies that do not arise in standard (unrefined) calculi. The mechanization was simplified

by the use of two essential ingredients. First, we use an unrefined base language λF , a classic

System F [38], in rules where refinements are not required, cutting two potential circularities

in the static judgments (Figure 2.2). Second, we define an implication interface that abstractly

specifies the properties of implication required to prove type soundness, and show how this

interface can be implemented via denotational semantics (§ 3.3.4).

3. Reification Our third contribution, presented in Chapter 6, is to introduce data

propositions, a novel feature in LIQUIDHASKELL that enables the encoding of derivation trees for

inductively defined judgments as refined data types, by first reifying the propositions and evidence

as plain Haskell data, and then using refinements to connect the two. Hence, data propositions let

us write plain Haskell functions over refined data to provide explicit, constructive proofs (§ 6.2).

Without data propositions reasoning about potentially non-terminating computations was not

possible in LIQUIDHASKELL, thereby precluding even simple metatheoretic developments such

as the soundness of λF let alone λRF .

4. Mechanization Chapter 7 describes another contribution: we mechanized the metathe-

ory of λRF twice: using LIQUIDHASKELL and COQ. We formalized λRF in LIQUIDHASKELL

(§ 7.1) to evaluate the feasibility of such substantial metatheoretical formalizations. Our proof

is non-trivial, requiring 9,400 lines of code, 30 minutes to verify, and various modifications in

the internals of LIQUIDHASKELL. We translated the same proof to COQ (§ 7.2) to compare

the two alternatives. Certain definitions, concretely the type denotations, not admissible by

LIQUIDHASKELL’s positivity checker, were possible to define in COQ using Equations [45].

Further, the COQ development is much faster (about 60 seconds to verify), but it is also more dif-

3

ficult to manipulate various partial and mutual recursive definitions of the formalization. Finally,

COQ comes with stronger foundational soundness guarantees than LIQUIDHASKELL. While the

metatheory of COQ is well studied, λRF lays the foundation for the mechanized metatheory of

LIQUIDHASKELL.

5. Data Types Our next contribution, described in Chapter 9, is to add data types to λRF

in the form of lists that are equipped with a length measure. For instance, the programmer can

write a safe polymorphic tail function that requires its input to be a non-empty list (length at least

one). The addition of lists to our language, which we denote by λRFD, adds new complexity to

our metatheory. A case switch operator enables path-sensitive reasoning when destructing lists

and leads to challenging new cases for our soundness theorems.

1.2 Related Work

We discuss the most closely related work on the metatheory of unrefined and refined type

systems.

Hybrid & Contract Systems Flanagan [15] formalizes on paper a monomorphic lambda

calculus with refinement types that differs from our λRF in two ways. First, in Flanagan [15]’s type

checking is hybrid: the developed system is undecidable and inserts runtime casts when subtyping

cannot be statically decided. Second, the original system lacks polymorphism. Sekiyama et al.

[44] extended hybrid types with polymorphism, but unlike λRF , their system does not support

semantic subtyping. For example, consider a divide by zero-error. The refined types for div

and 0 could be given by div :: Int→ Int{n : n ̸= 0}→ Int and 0 :: Int{n : n = 0}. This system

will compile div 1 0 by inserting a cast on 0: ⟨Int{n : n = 0} ⇒ Int{n : n ̸= 0}⟩, causing a

definite runtime failure that could have easily been prevented statically. Having removed semantic

subtyping, the metatheory of Sekiyama et al. [44] is highly simplified. Static refinement type

systems (as summarized by Jhala and Vazou [23]) usually restrict the definition of predicates to

4

quantifier-free first-order formulae that can be decided by SMT solvers. This restriction is not

preserved by evaluation that can substitute variables with any value, thus allowing expressions

that cannot be encoded in decidable logics, like lambdas, to seep into the predicates of types. In

contrast, we allow predicates to be any language term (including lambdas) to prove soundness

via preservation and progress: our meta-theoretical results trivially apply to systems that, for

efficiency of implementation, restrict their source languages. Finally, none of the above systems

(hybrid, contracts or static refinement types) come with a machine checked soundness proof.

Semantic Subtyping Semantic subtyping is not a unique feature of refinement types. For

example, Frisch et al. [18] use the set theoretic models of types to decide subtyping. Castagna and

Frisch [8] present an algorithm that decides semantic subtyping for a core calculus with functional

types. Like λRF , Castagna and Frisch [8] introduce a denotational interpretation of types to break

the circularity between the typing and subtyping relations. Unlike λRF , their system does not have

polymorphism and, crucially, has no notion of dependency (no refinement type-style binder of

arguments). Moreover, their subtyping algorithm is different from our refinement based algorithm:

it is neither type directed nor efficient (i.e. it requires backtracking), and cannot be automated by

an external SMT solver.

Mechanizations of Refinement Types Lehmann and Tanter [27]’s COQ formalization

of a monomorphic, refined calculus differs from λRF in two ways. First, their axiomatized

implication, which is similar to our implication interface, allows them to restrict the language

of refinements to decidable logics but provides no formal connection between subtyping and

evaluation. Instead, we also provide the denotational implementation of the implication interface,

thus establish denotation soundness. Second, λRF includes polymorphism, existentials, and

selfification which are critical for context-sensitive refinement typing, but make the metatheory

more challenging. Hamza et al. [22] present System FR, a polymorphic, refined language with

a mechanized metatheory of about 30K lines of COQ. Compared to our system, their notion of

subtyping is not semantic, but relies on a reducibility relation. For example, even though System

5

FR will deduce that Pos is a subtype of Int, it will fail to derive that Int → Pos is subtype

of Pos→ Int as reduction-based subtyping cannot reason about contra-variance. Because of

this more restrictive notion of subtyping, their mechanization requires neither the indirection

of denotational soundness nor an implication proving oracle. Further, System FR’s support for

polymorphism is limited in that it disallows refinements on type variables, thereby precluding

many practically useful specifications. Recently, Chen [10] formalized a refinement type system

as an embedding of refinement types in Agda. This system is verified in a few thousand lines

of Agda. This formalism differs significantly from ours in that as an embedding it is built on

top of a rich theorem prover and cannot be used to refine some existing programming language.

Further, it does not support higher-order functions, polymorphism, semantic subtyping, neither be

automated by an external solver since soundness reduces to Agda’s soundness. Finally, Ghalayini

and Krishnaswami [19] mechanize refinement types with explicit proof terms in 15K lines of

LEAN code. They use a categorical, denotational semantics soundness statement, but their

calculus by design supports neither semantic subtyping nor polymorphism.

Metatheory in LIQUIDHASKELL LWeb [36] also used LIQUIDHASKELL to prove

metatheory, the non-interference of λLWeb, a core calculus that extends the LIO formalism with

database access. The LWeb proof did not use refined data propositions, which were not present at

development time, and thus it has two major weaknesses compared to our present development.

First, LWeb assumes termination of λLWeb’s evaluation function; without refined data propositions

metatheory can be developed only over terminating functions. This was not a critical limitation

since non-interference was only proved for terminating programs. However, in our proof the

requirement that evaluation of λRF terminates would be too strict. In our encoding with refined

data propositions such an assumption was not required. Second, the LWeb development is not

constructive: the structure of an assumed evaluation tree is logically inspected instead of the

more natural case splitting permitted only with refined data propositions. This constructive way

to develop metatheories is more compact (e.g. there is no need to logically inspect derivation

6

trees) and akin to the standard meta-theoretic developments of constructive tools like COQ and

ISABELLE.

Acknowledgements for Chapter 1

This chapter is adapted from “Mechanizing Refinement Types” in the proceedings of

the 51st ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2024),

by Michael Borkowski, Niki Vazou, and Ranjit Jhala. The dissertation author was the primary

investigator and author of this material.

7

Chapter 2

Refinement Types

We start with an informal overview of the usefulness of refinement types and of our refined

core calculus λRF , which we later present formally (Chapter 3) and prove sound (Chapter 5).

Concretely, we present the goals of refinement types (§ 2.1) and how they are achieved via

three essential features: semantic subtyping, existential types, and polymorphism (§ 2.2). We

explain how the typing judgements are designed to accommodate these features (§ 2.3) and how

we addressed the challenges these features impose in the mechanization of the soundness proof

(§ 2.4). Our examples here are presented with the syntax of LIQUIDHASKELL, but can be encoded

in λRF .

2.1 The goal of Refinement Types

Refinement types refine the types of an existing programming language with logical

predicates to define abstractions not expressible by the underlying type system, which can then

be used for static (1) error prevention and (2) functional correctness.

Error Prevention Figure 2.1 presents the interface of a fixed size array that is encoded

in the core calculus λRF as a function. The function new n x returns an array that contains x

when indexed with an integer between 0 and n and otherwise throws an “out of bounds” error.

8

type ArrayN a N = {i:Nat | i < N} → a

new :: n:Nat → a → ArrayN a n
new n x = \i → if 0 ≤ i && i < n then x else error "Out of Bounds"

set :: n:Nat → i:{Nat | i < n} → a → ArrayN a n → ArrayN a n
set n i x a = \j → if i == j then x else a j

get :: n:Nat → i:{Nat | i < n} → ArrayN a n → a
get n i a = a i

Figure 2.1: Functional Arrays with refinement types that ensure safe indexing.

To statically ensure that this error will never occur, new returns the refined array ArrayN a n,

i.e. a function whose domain is restricted to integers less than n. The set and get operators

manipulate the refined arrays on the index i:{Nat | i < n}, i.e. refined to be in-bounds of the

array. With this refined interface, out-of-bounds indexing is statically ruled out:

array10 :: ArrayN Int 10

array10 = new 10 0

good = get 10 4 array10 -- OK

bad = get 10 42 array10 -- Refinement Type Error

Functional Correctness Refinement types are also used to ensure that the program has

the intended behavior. To achieve this, we use uninterpreted functions to specify behaviors and

rely on the type system to propagate them. For example, below using the uninterpreted function

isPrime we specify that some integers are primes, as denoted by the uninterpreted predicate

isPrime.

measure isPrime :: Int → Bool

type Prime = {v:Int | isPrime v}

Refinement types are not ideally suited to verifying properties like primality checking, which re-

quires reasoning beyond SMT decidable fragments. However, assuming that a function establishes

9

primality, refinements can be used to easily track and propagate the invariant:

assume checkPrime :: x:Int → {v:Bool | v ⇔isPrime x}

nextPrime :: Nat → Prime

nextPrime x = if checkPrime x then x else nextPrime (x+1)

The path-sensitivity of refinement types (Rule T-IF of Figure 3.6) ensures that the function

nextPrime returns only values that pass the primality check.

Note on recursion Our core calculus does not explicitly support recursion. But it

can be extended with primitive constants (as long as they satisfy the consistency condition in

Requirement 3.2 below). So, to encode inductive definitions, like nextPrime in our system, we

use the fixpoint constant fix:

fix :: (a → a) → a

nextPrime = fix @(Nat→ Prime) (\f x→ if checkPrime x then x else f (x

+1))

Importantly, our calculus is fully polymorphic, in the sense that type variables can be instantiated

with refined types. So, the type variable of fix can be instantiated with the refined type Nat

→ Prime to get the desired type of nextPrime. Here, for emphasis, we make this instantiation

explicit, but in real systems, like LIQUIDHASKELL, the refined type application is inferred.

Primes Array Example As a bigger example, consider an example where refinements are

used for both error prevention and functional correctness. The function primes n generates an

array with the first n prime numbers:

primes :: n:Nat → ArrayN Prime n

primes n = (fix go) 1 0 (new n (nextPrime 1))

where go f i p acc = if i < n

then let p’ = nextPrime (p+1) in

10

http://goto.ucsd.edu:8090/index.html#?demo=permalink%2F1687971696_2572.hs

go f (i+1) p’ (set n i p’ acc)

else acc

Since primes typechecks under the safe array interface of Figure 2.1, no out-of-bounds errors

will occur. At the same time, all elements of the array are set by a result nextPrime and thus

primes returns an array of prime numbers.

2.2 The Essence of Refinement Types

The practicality of refinement types, as illustrated in the examples above, is due to the

combination of three essential features:

1. Semantic Subtyping: The user does not need to provide any explicit type casts, because sub-

typing is implicit and semantic. For example, to type check get 10 4 array10 (from § 2.1),

the type of 4 :: {v:Int | v == 4} is implicitly converted to {v:Int | 0 ≤ v < 10}

2. Decidability: The semantic casts are reduced to logical implications checked by an SMT

solver. Refinement types are designed to generate decidable logical implications, to ensure

predictable verification and also permit type inference [42] that makes verification practical,

e.g. the primes definition requires zero annotations.

3. Polymorphism: Polymorphism on refinement types permits instantiation of type variables

with any refined type. For example, the same array interface can be used to describe primes,

functions with positive domains, and any other concept encoded as a refinement type.

2.3 The Design of Refinement Types

Next, we develop a minimal calculus λRF that shows how Refinement type systems enjoy

the three essential features of § 2.2. λRF has four judgements that relate expressions (e), types (t),

11

kinds (k), predicates (p), and environments (Γ): (1) typing (Γ ⊢ e : t), (2) subtyping (Γ ⊢ t1 ⪯ t2),

(3) well-formedness (Γ ⊢w t : k), and (4) implication checking (Γ ⊢ p1 ⇒ p2). In § 3.3 we define

the judgements in detail. Here, we present the design decisions that ensure the three essential

features of refinement types.

2.3.1 Semantic Subtyping

Refinement types rely on implicit semantic subtyping, that is, type conversion (from

subtypes) happens without any explicit casts and is checked semantically via logical validity.

For example, in the application get 10 4 array10 (of Fig. 2.1), the type of 4 was implicitly

converted. To see how, consider an environment Γ that contains the array interface. Let Γ ⊆ {get :

n : Int→ i : Int{ν : ν < n}→ ArrayN a n → a} For brevity, we ignore the requirement that i and

n are natural numbers and, as in Fig. 2.1, we use ArrayN a n as shorthand for Int{ν : ν < n}→ a.

The application (get 10) 4 will type check as below, using the T-SUB rule to implicitly convert

the type of the argument and the S-BASE rule to check that 4 is a valid index by checking the

validity of the formula ∀ν. ν = 4 ⇒ ν < 10.

. . .

Γ ⊢ get 10 : Int{ν : ν < 10}→ . . .

Γ ⊢ 4 : Int{ν : ν = 4}

∀ν.ν = 4 ⇒ ν < 10

Γ ⊢ Int{ν : ν = 4} ⪯ Int{ν : ν < 10}
S-BASE

Γ ⊢ 4 : Int{ν : ν < 10}
T-SUB

Γ ⊢ get 10 4 : ArrayN a 10 → a

Importantly, most refinement type systems use syntax-directed rules to destruct subtyping

obligations into basic (semantic) implications. For example, in Figure 3.7 the rule S-FUN states

that functions are covariant on the result and contravariant on the arguments. Thus, a refinement

type system can, without any casts, decide that a20 : ArrayN a 20 is a suitable argument for the

higher order function get 10 4 : ArrayN a 10 → a and type check the expression get 10 4 a20.

12

2.3.2 Decidability

As illustrated in the previous type derivation, refinement type checking essentially gener-

ates a set of verification conditions (VCs) whose validity implies type safety. Importantly, the

refinement type checking rules are designed to generate VCs in the logical language used by the

user-provided specifications. In general, let L be a logical language that contains equality and

conjunction. If all the user-specified predicates belong to L , then the VCs will be in L as well.

In practice (e.g. in Liquid Haskell [50] and Flux [29]), L is the qualifier-free logic of equality,

uninterpreted functions, and linear arithmetic (QF-EUFLIA).

To achieve this logical-language preservation, special care is taken in type checking

function declarations and applications.

Function Declarations Function declarations are checked using the refinement type rule

for let bindings (Rule T-LET also in Figure 3.6).

Γ ⊢ e f : t f Γ ⊢w t : k f : t f ,Γ ⊢ e : t

Γ ⊢ let f = e f in e : t
T-LET

The type checking must infer the type t f of the function, but that could be user-annotated (e.g. e f

could be e′f : t f).

Importantly, the body e is checked without knowledge of the definition of f . The exact

encoding of the body of the function definitions (for example, as done in Dafny [30] or Prusti [1])

requires the use of ∀-quantifiers in the SMT solver, thus potentially leading to undecidability.

Instead, refinement types only use the refinement type specifications of functions, providing a

fast but incomplete verification technique. For example, given only the specifications of get and

set, and not their exact definitions, it is not possible to show that get after set returns the value

that was set.

getSet :: n:Int → i:{Nat|i<n} → x:a → ArrayN a n → {v:a|x == v}

13

getSet n i x a = get n i (set n i x a) -- Refinement Type Error

Function Application For decidable type checking, refinement types use an existential

type [26] to check dependent function application, i.e. the TAPP-EXISTS rule below, instead of

the standard type-theoretic TAPP-EXACT rule.

Γ ⊢ f : x:tx → t Γ ⊢ e : tx

Γ ⊢ f e : t[e/x]
TAPP-EXACT

Γ ⊢ f : x:tx → t Γ ⊢ e : tx

Γ ⊢ f e : ∃x:tx. t
TAPP-EXISTS

To understand the difference, consider some expression e of type Pos and the identity

function f

e : Pos f : x:Int→ Int{v : v = x}

The application f e is typed as Int{v : v = e} with the TAPP-EXACT rule, which has two problems.

First, the information that e is positive is lost. To regain this information the system needs to

re-analyze the expression e breaking compositional reasoning. Second, the arbitrary expression

e enters the refinement logic potentially breaking decidability. Using the TAPP-EXISTS rule,

both of these problems are addressed. Typing first uses subtyping on f to track the actual type of

the argument, thus weakening the type of f to f : x:Pos→ Int{v : v = x}. With this, the type of

f e becomes ∃x:Pos.Int{v : v = x} preserving the information that the application argument is

positive, while the variable x cannot break any carefully crafted decidability guarantees.

Knowles and Flanagan [26] introduce the existential application rule and show that it

preserves the decidability and completeness of the refinement type system. An alternative

approach for decidable and compositional type checking is to ensure that all the application

arguments are variables by ANF transforming the original program [16]. ANF is more amicable to

implementation as it does not require the definition of one more type form. However, ANF is more

problematic for the metatheory, as ANF is not preserved by evaluation. Additionally, existentials

14

let us synthesize types for let-binders in a bidirectional style: when typing let x = e1 in e2, the

existential lets us eliminate x from the type synthesized for e2, yielding a precise, algorithmic

system [12]. Thus, we choose to use existential types in λRF .

2.3.3 Polymorphism

Polymorphism is a precious type abstraction [54], but combined with refinements, it can

lead to imprecise or, worse, unsound systems. As an example, below we present the function max

with four potential type signatures.

Definition max = λx y.if x < y then y else x

Attempt 1: Monomorphism max :: x:Int→ y:Int→ Int{ν : x ≤ ν∧ y ≤ ν}

Attempt 2: Unrefined Polymorphism max :: x:α → y:α → α

Attempt 3: Refined Polymorphism max :: x:α → y:α → α{ν : x ≤ ν∧ y ≤ ν}

λRF : Kinded Polymorphism max :: ∀α:B.x:α → y:α → α{ν : x ≤ ν∧ y ≤ ν}

As a first attempt, we give max a monomorphic type, stating that the result of max is an integer

greater than or equal to each of its arguments. This type is insufficient because it forgets any

information known for max’s arguments. For example, if both arguments are positive, the system

cannot decide that max x y is also positive. To preserve the argument information we give max a

polymorphic type, as a second attempt. Now the system can deduce that max x y is positive, but

forgets that it is also greater than or equal to both x and y. In a third attempt, we naively combine

the benefits of polymorphism with refinements to give max a very precise type that is sufficient to

propagate the arguments’ properties (positivity) and max behavior (inequality).

Unfortunately, refinements on arbitrary type variables are dangerous for two reasons. First,

the type of max implies that the system allows comparison of any values (including functions).

Second, if refinements on type variables are allowed, then, for soundness [4], all the types that

15

substitute variables should be refined. For example, as detailed in §6 of [23], if a type variable

is refined with false (i.e. α{ν :false}) and gets instantiated with an unrefined function type

(x:tx → t), then the false refinement is lost and the system becomes unsound.

Base Kind when Refined To preserve the benefits of refinements on type variables,

without the complications of refining function types, we introduce a kind system that separates

the type variables that can be refined from the ones that cannot. To do so, we extend the standard

well-formedness rule of refinement types to also perform kind checking (Γ ⊢w t : k). Variables

with the base kind B can be refined, compared, and only substituted by base, refined types. The

other type variables have kind ⋆ and can only be trivially refined with true. With this kind

system, we have a simple and convenient way to encode comparable values, and we can give max

a polymorphic and precise type that naturally rejects non-comparable (e.g. function) arguments.

This simple kind system could be further stratified, i.e. if some base types did not support

comparison, and it could be implemented via typeclass constraints, if our system contained

data types. A first step towards data types is presented in Chapter Chapter 9, where we add

polymorphic lists to λRF , which can be refined (for instance, to restrict the length of the list), but

cannot be compared like base types. This latter restriction is needed because lists themselves can

contain incomparable terms like functions.

2.4 The Soundness of Refinement Types

In this work we establish two soundness theorems for refinement types that precisely

relate typing judgments Γ ⊢ e : t with the high-level goals of error prevention (type safety) and

functional correctness (denotational soundness).

1. Type Safety ensures that well-typed programs do not get stuck at runtime. It says that

if an expression has a type (/0 ⊢ e : t) and evaluates to another expression (e ↪→∗ e′), then either

evaluation reached a value or it can take another step (e′ ↪→ e′′). In λRF , we use the primitive

16

Γ ⊢ e : t
TYPING

Γ ⊢ t ⪯ t
SUBTYPING

Γ ⊢w t : k
WELL-FORMEDNESS

Γ ⊢ p ⇒ p
IMPLICATION

1

2

3

4
6

5

Figure 2.2: Dependencies of Typing Judgements in Refinement Types. (Dashed lines do not
exist in our formalism.)

error to denote program errors (such as out-of-bounds indexing of Figure 2.1). The error

primitive neither is a value nor takes a step. Thus, if an expression type checks, via type safety,

we know that error will not be reached at runtime. Theorem 5.3 formally defines type safety,

and it is proved via the preservation and progress lemmas. Type safety ensures that programs will

not get stuck, but does not ensure that they satisfy their functional specifications. This is ensured

by the second soundness theorem.

2. Denotational Soundness states that if an expression has a type (/0 ⊢ e : t), then

it belongs in the denotations of this type (e ∈ J t K). For example, the denotation of the type

{i:Nat | i ≤ 42} is the set of integers between 0 and 42. In § 3.3 we inductively define the

denotations of each type and Theorem 5.1 formally encodes denotational soundness. Combining

Lemmas Theorem 5.3 and Theorem 5.1, we see that the refined λRF type that can be checked

for a specific program is preserved under evaluation, and thus the semantics of the program is

preserved under evaluation.

This dissertation, for the first time, mechanizes the soundness of refinement types with

semantic subtyping, existential types, and polymorphism. This mechanization turned out to be

challenging for three main reasons:

Challenge 1: Circularities Figure 2.2 presents the dependencies of the four typing

judgements in refinement types. As we saw in the example of § 2.3.1 (and can be confirmed

in the rules defined in § 3.3), typing depends on subtyping (arrow 1) which in turn depends on

17

implication checking (arrow 5). Subtyping depends on typing (arrow 2; because of rule S-WIT

of Figure 3.7), so typing and subtyping have a circular dependency we cannot break. Typing

also depends on well-formedness (arrow 3) that checks that types, especially the ones inferred

by the system, are well-formed: all the variables appearing in the refinements are bound in the

type environment and refinements are of boolean type. To check the type of the refinements the

system could use typing thus introducing one more dependency (arrow 4) and yet another circle.

We break this dependency by using an unrefined calculus (system λF) that erases refinements,

to check that refinements are well-typed booleans. The final potential circle is introduced when

implication depends on typing (arrow 6). In § 3.3.4.3 we define implication via type denotations,

but as observed by Greenberg [21], in this case, special care should be taken so that the system is

monotonic and thus well-defined. To avoid this dangerous circularity we again use typing of λF

(and not λRF) to define denotations and thus implication.

In summary, circularities in typing judgements are problematic for two reasons:

1. Circularities increase the complexity of proof mechanization. Concretely, because typing and

subtyping have a circular dependency, the metatheoretical lemmas (substitution, weakening,

narrowing, etc.) require versions for both typing and subtyping, which are proved by mu-

tual induction. If well-formedness was also included in this circularity (arrow 4), then the

complexity of the proofs would greatly increase, but would not necessarily be impossible.

2. Second, circularities are problematic because they can lead to non-well-defined systems.

Concretely, Greenberg [21] describes an older refinement type system in which typing appeared

in the left-hand side of subtyping and, as such, it was non-monotonic and thus not well-defined.

This situation corresponds to the red arrow 6 in fig. 2.2, which would make the proof impossible

due to the typing judgment occurring in a negative position in the implication judgment.

Challenge 2: Implications The second mechanization challenge was the encoding of

implication. In the bibliography of refinement types, implication has been defined in three ways:

18

1. Using denotations (of types as sets of terms) defined via operational semantics [53, 15]. This

encoding is more convenient when proving the soundness of the system, since implication and

thus subtyping and typing, directly connect with operational semantics, making the proof of

soundness more direct. However, the implementation of this encoding of implication is not

realistic, since it is not decidable.

2. Using logical implication [42, 20]. The encoding of the implication as a logical implication

is the closest to the implementation of a refinement system, where an SMT is used to check

logical implications. Yet, to prove soundness, a claim should be made that logical implication

checked by the SMT correctly approximates the runtime semantics of the system (i.e. presented

in rule I-LOG of § 3.3.4.2) which has never been mechanized.

3. By axiomatization [27]. A final approach is to leave the implication uninterpreted and

axiomatize it with all the properties required to prove soundness. This approach is the easiest

to mechanize, but it is dangerous, since in the past the axioms assumed for implication were

inconsistent, thus soundness was “proved with flawed premises” (as quoted from Table 1

of [44]).

Our mechanization follows a combination of the first and the third approach. We specify the

interface of implication (via Requirement 3.3 of § 3.3.4.1 which is encoded as an inductive data

type in the proof mechanization) to articulate the exact properties required by the soundness

proof. Then, in § 3.3.4.3, we implement the implication interface using the denotational semantics

of the system. This encoding has two major benefits. First, the denotational implementation

ensures that our interface is consistent. Second, the development of the interface leaves room

for the implementation of alternative implication “oracles”, e.g. closer to SMT solvers. Even

though we did not mechanize this alternative implementation, in § 3.3.4.2 we present how logical

implications are derived from the implication judgement.

Challenge 3: Proof Complexity All the three essential features of refinement types add

19

complexity to the mechanization of the soundness proof. Polymorphism requires the extension of

well-formedness to kind checking. Semantic subtyping makes type checking not syntax-directed

(thus inversion is not trivial, cf. § 5.3) and dependent upon subtyping. In turn, the existential

types required for decidability make subtyping dependent upon type checking. Due to this mutual

dependency, the standard metatheoretical lemmas (substitution, weakening, narrowing, etc.)

require versions for both typing and subtyping, which are proved by mutual induction. Thus,

the combination of the three essential for refinement types features makes the metatheoretical

development more complex and prone to unsoundness. Once, we have carefully broken the

various circularities and eliminated potential sources of unsoundness, we get unsurprising, albeit

strenuous, proofs of the soundness of refinement typing.

Acknowledgements for Chapter 2

This chapter is adapted from “Mechanizing Refinement Types” in the proceedings of

the 51st ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2024),

by Michael Borkowski, Niki Vazou, and Ranjit Jhala. The dissertation author was the primary

investigator and author of this material.

20

Chapter 3

The Languages λF and λRF

To cut the circularities in the metatheory, we formalize refinements using two calculi. The

first is the base language λF : a classic System F [38] with call-by-value semantics extended with

primitive Int and Bool types and operations. The second is the refined language λRF which

extends λF with refinements. By using the first calculus to express the typing judgments for

our refinements, we avoid making the well-formedness (in rule WF-REFN in § 3.3.1) and the

implication (in type denotations of Figure 3.8) judgments mutually dependent with the typing

judgments. We use the grey highlights for the extensions to λF required for λRF .

3.1 Syntax

We start by describing the syntax of terms and types in the two calculi.

Constants, Values and Terms Figure 3.1 summarizes the syntax of terms in both calculi.

The primitives c include Int and Bool constants, boolean operations, the polymorphic compar-

ison and equality, and their curried versions. Values v are constants, binders and λ- and type-

abstractions. Finally, the terms e comprise values, value- and type- applications, let-binders,

annotated expressions, conditionals, and runtime errors. The types in annotations are, potentially

wrong, specifications written by the user and checked by the type checker.

21

Primitives c ::= true | false | 0,1,2, . . . booleans and integers
| ∧,∨,¬,↔ boolean ops.
| ≤,= polymorphic comparisons

Values v ::= c primitives
| x, y, . . . variables
| λx.e abstractions
| Λα:k.e type abstractions

Terms e ::= v values
| e1 e2 applications
| e[t] type applications
| let x = e1 in e2 let-binders
| e : t annotations
| if e0 then e1 else e2 conditionals
| error runtime errors

Figure 3.1: Syntax of Primitives, Values, and Expressions.

Kinds k ::= B | ⋆ base and star kind

Predicates p ::= {e | ∃Γ.Γ ⊢F e : Bool} boolean-typed terms

Base Types b ::= Bool | Int | α bool, ints, and type variables

Types t ::= b{ν : p} refined base type
| x:tx → t function type
| ∃x:tx. t existential type
| ∀α:k. t polymorphic type

Environments Γ ::= ∅ | Γ,x : t | Γ,α :k variable and type bindings

Figure 3.2: Syntax of Types. The gray boxes are the extensions to λF needed by λRF . We use τ

for λF -only types.

Kinds & Types Figure 3.2 shows the syntax of the types, with the gray boxes indicating

the extensions to λF required by λRF . In λRF , only base types can be refined: we do not permit

refinements for functions and polymorphic types. λRF enforces this restriction using two kinds

which denote types that may (B) or may not (⋆) be refined. The (unrefined) base types b comprise

Int, Bool, and type variables α. The simplest type is of the form b{ν : p} comprising a base

type b and a refinement that restricts b to the subset of values ν that satisfy p i.e. for which p

evaluates to true. We use refined base types to build up dependent function types (where the

input parameter x can appear in the output type’s refinement), existential and polymorphic types.

22

In the sequel, we write b to abbreviate b{ν :true} and call types refined with only true “trivially

refined” types.

Refinement Erasure The reduction semantics of our polymorphic primitives are defined

using an erasure function that returns the unrefined, λF version of a refined λRF type:

⌊b{ν : p}⌋ .
= b, ⌊x:tx → t⌋ .

= ⌊tx⌋ → ⌊t⌋, ⌊∃x:tx. t⌋
.
= ⌊t⌋, and ⌊∀α:k. t⌋ .

= ∀α:k.⌊t⌋

Environments Figure 3.2 describes the syntax of typing environments Γ which contain

both term variables bound to types and type variables bound to kinds. These variables may appear

in types bound later in the environment. In our formalism, environments grow from right to left.

Note on Variable Representation Our metatheory requires that all variables bound in

the environment are distinct. Our mechanization enforces this invariant via the locally nameless

representation [2]: free and bound variables are distinct objects in the syntax, as are type and

term variables. All free variables have unique names which never conflict with bound variables

represented as de Bruijn indices. This eliminates the possibility of capture in substitution and

the need to perform alpha-renaming during substitution. The locally nameless representation

avoids technical manipulations such as index shifting by using names instead of indices for free

variables (we discuss alternatives in § 1.2). To simplify the presentation of the syntax and rules,

we use names for bound variables to make the dependent nature of the function arrow clear.

3.2 Dynamic Semantics

Figure 3.3 summarizes the substitution-based, call-by-value, contextual, small-step se-

mantics for both calculi. We specify the reduction semantics of the primitives using the functions

δ and δT .

Substitution The key difference with standard formulations is the notion of substitution

for type variables at (polymorphic) type-application sites as shown in rule E-TAPP. Type

23

Operational Semantics e ↪→ e′

c v ↪→ δ(c,v)
E-PRIM

c[t] ↪→ δT (c,⌊t⌋)
E-TPRIM

e ↪→ e′

e : t ↪→ e′ : t
E-PANN

v : t ↪→ v
E-ANN

e ↪→ e′

e e1 ↪→ e′ e1
E-PLAPP

e ↪→ e′

v e ↪→ v e′
E-PRAPP

(λx.e) v ↪→ e[v/x]
E-APP

(Λα:k.e)[t] ↪→ e[t/α]
E-TAPP

e ↪→ e′

e[t] ↪→ e′[t]
E-PTAPP

ex ↪→ e′x
let x = ex in e ↪→ let x = e′x in e

E-PLET
let x = v in e ↪→ e[v/x]

E-LET

e ↪→ e′

if e then e1 else e2 ↪→ if e′ then e1 else e2
E-PIF

if true then e1 else e2 ↪→ e1
E-IFT

if false then e1 else e2 ↪→ e2
E-IFF

Figure 3.3: The small-step semantics.

24

β{x : p}[tα/α]
.
= β{x : p[tα/α]},α ̸= β

(x:tx → t)[tα/α]
.
= x:(tx[tα/α])→ t[tα/α]

(∃x:tx. t)[tα/α]
.
= ∃x:(tx[tα/α]). t[tα/α]

(∀β:k. t)[tα/α]
.
= ∀β:k. t[tα/α]

α{x : p}[tα/α]
.
= refine(tα, p[tα/α],x)

refine(α{z : q}, p,x) .
= α{z : p[z/x]∧q}

refine(∃z:tz. t, p,x) .
= ∃z:tz. refine(t, p,x)

refine(x:tx → t,_,_) .
= x:tx → t

refine(∀α:k. t,_,_) .
= ∀α:k. t

Figure 3.4: Type substitution and refinement strengthening.

substitution is defined on the left of Figure 3.4, and it is standard except for the last line which

defines the substitution of a type variable α in a refined type variable α{x : p} with a (potentially

refined) type tα. To do this substitution, we combine p with the type tα by using refine(tα, p,x)

which essentially conjoins the refinement p to the top-level refinement of a base-kinded tα. For

existential types, refine pushes the refinement through the existential quantifier. Function and

quantified types are left unchanged as they cannot instantiate a refined type variable (which must

be of base kind).

Primitives The function δ(c,v) evaluates the application c v of built-in monomorphic

primitives. The reductions are defined in a curried manner, i.e. ≤ m n evaluates to δ(δ(≤,m),n).

Currying gives us unary relations like m≤ which is a partially evaluated version of the ≤ relation.

The function δT (c,⌊t⌋) specifies the reduction rules for type application on the polymorphic

built-in primitives.

δ(∧,true) .
= λx.x δ(≤,m)

.
= m≤ δT (=,Bool)

.
= =

δ(∧,false) .
= λx.false δ(m≤,n) .

= (m ≤ n) δT (=,Int)
.
= =

δ(¬,true) .
= false δ(=,m)

.
= m= δT (≤,Bool)

.
= ≤

δ(¬,false) .
= true δ(m=,n) .

= (m = n) δT (≤,Int)
.
= ≤

Determinism Our soundness proof uses the determinism property of the operational

semantics.

Lemma 3.1 (Determinism). For every expression e, 1) there exists at most one term e′ s.t. e ↪→ e′,

2) there exists at most one value v s.t. e ↪→∗ v, and 3) if e is a value there is no term e′ s.t. e ↪→ e′.

25

3.3 Static Semantics

The static semantics of our calculi comprise four main judgment forms: (§ 3.3.1) well-

formedness judgments that determine when a type or environment is syntactically well-formed

(in λF and λRF); (§ 3.3.2) typing judgments that stipulate that a term has a particular type in a

given context (in λF and λRF); (§ 3.3.3) subtyping judgments that establish when one type can be

viewed as a subtype of another (in λRF); and (§ 3.3.4) implication judgments that establish when

one predicate implies another (in λRF). Next, we present the static semantics of λRF by describing

the rules that establish each of these judgments. We use grey to highlight the antecedents and

rules specific to λRF .

Co-finite Quantification We define our rules using the co-finite quantification technique

of Aydemir et al. [3]. This technique enforces a small (but critical) restriction in the way fresh

names are introduced in the antecedents of rules. For example, below we present the standard (on

the left) and our (on the right) rules for type abstraction.

α
′ ̸∈ Γ α

′ :k,Γ ⊢ e[α′/α] : t[α′/α]

Γ ⊢ Λα:k.e : ∀α:k. t
T-ABS-EX

∀α
′ ̸∈ L. α

′ :k,Γ ⊢ e[α′/α] : t[α′/α]

Γ ⊢ Λα:k.e : ∀α:k. t
T-TABS

The standard rule T-ABS-EX requires the existence of a fresh type variable name α′. Instead, our

co-finite quantification rule states that the rule holds for any name excluding a finite set of names

L. As observed by Aydemir et al. [3] this rephrasing simplifies the mechanization of metatheory

by eliminating the need for renaming lemmas.

3.3.1 Well-formedness

Judgments The judgment Γ ⊢w t : k says that the type t is well-formed in the environment

Γ and has kind k. The judgment ⊢w Γ says that the environment Γ is well-formed, meaning that

it only binds to well-formed types. Well-formedness is also used in the (unrefined) system λF ,

26

where Γ ⊢F
w τ : k means that the (unrefined) λF type τ is well-formed in environment Γ and has

kind k and ⊢w Γ means that the free type variables of the environment Γ are bound earlier in the

environment. Well-formedness is not strictly required for λF , but it simplifies the mechanization

[43].

Rules Figure 3.5 summarizes the rules that establish the well-formedness of types and

environments. Rule WF-BASE states that the two closed base types (Int and Bool, refined

with true in λRF) are well-formed and have base kind. Similarly, rule WF-VAR says that a

type variable α is well-formed with kind k so long as α :k is bound in the environment. The

rule WF-REFN stipulates that a refined base type b{x : p} is well-formed with base kind in

some environment if the unrefined base type b has base kind in the same environment and if the

refinement predicate p has type Bool in the environment augmented by binding a fresh variable

to type b. Note that if b ≡ α then we can only form the antecedent Γ ⊢w α{x :true} : B when

α :B ∈ Γ (rule WF-VAR), which prevents us from refining star-kinded type variables. To break a

circularity in which well-formedness judgments appear in the antecedents of typing judgments

and a typing judgment appears in the antecedents of WF-REFN, we use the λF judgment to check

that p has type Bool. Our rule WF-FUNC states that a function type x:tx → t is well-formed

with star kind in some environment Γ if both type tx is well-formed (with any kind) in the same

environment and type t is well-formed (with any kind) in the environment Γ augmented by

binding a fresh variable to tx. Rule WF-EXIS states that an existential type ∃x:tx. t is well-formed

with some kind k in some environment Γ if both type tx is well-formed (with any kind) in the

same environment and type t is well-formed with kind k in the environment Γ augmented by

binding a fresh variable to tx. Rule WF-POLY establishes that a polymorphic type ∀α:k. t has

star kind in environment Γ if the inner type t is well-formed (with any kind) in environment Γ

augmented by binding a fresh type variable α to kind k. Finally, rule WF-KIND simply states that

if a type t is well-formed with base kind in some environment, then it is also well-formed with

star kind. This rule is required by our metatheory to convert base to star kinds in type variables.

27

Well-formed Type Γ ⊢w t : k

b ∈ {Bool,Int}
Γ ⊢w b{x :true} : B

WF-BASE
α :k ∈ Γ

Γ ⊢w α{x :true} : k
WF-VAR

Γ ⊢w t : B
Γ ⊢w t : ⋆

WF-KIND

Γ ⊢w b{x :true} : B
∀y ̸∈ Γ.y :b,⌊Γ⌋ ⊢F p[y/x] : Bool

Γ ⊢w b{x : p} : B
WF-REFN

Γ ⊢w tx : kx

∀y ̸∈ Γ. y : tx, Γ ⊢w t [y/x] : k

Γ ⊢w x:tx → t : ⋆
WF-FUNC

Γ ⊢w tx : kx ∀y ̸∈ Γ. y : tx,Γ ⊢w t[y/x] : k
Γ ⊢w ∃x:tx. t : k

WF-EXIS

∀α
′ ̸∈ Γ. α

′ :k,Γ ⊢w t[α′/α] : kt

Γ ⊢w ∀α:k. t : ⋆
WF-POLY

Well-formed Environment ⊢w Γ

⊢w ∅
WFE-EMP

Γ ⊢w tx : kx ⊢w Γ x ̸∈ Γ

⊢w x : tx,Γ
WFE-BIND

⊢w Γ α ̸∈ Γ

⊢w α :k,Γ
WFE-TBIND

Figure 3.5: Well-formedness of types and environments. The rules for λF exclude the gray
boxes.

As for environments, rule WFE-EMP states that the empty environment is well-formed.

Rule WFE-BIND says that a well-formed environment Γ remains well-formed after binding a

fresh variable x to any type tx that is well-formed in Γ. Finally, rule WFE-TBIND states that a

well-formed environment remains well-formed after binding a fresh type variable to any kind.

3.3.2 Typing

The judgment Γ ⊢ e : t states that the term e has type t in the context of environment Γ.

We write Γ ⊢F e : τ to indicate that term e has the (unrefined) λF type τ in the (unrefined) context

Γ. Figure 3.6 summarizes the rules that establish typing for both λF and λRF , with gray for the

28

Typing Γ ⊢ e : t

Γ ⊢ c : ty(c)
T-PRIM

x : t ∈ Γ

Γ ⊢w t : k

Γ ⊢ x : self(t ,x,k)
T-VAR

Γ ⊢ e : t
Γ ⊢w t : k

Γ ⊢ e : t : t
T-ANN

Γ ⊢w t : k
Γ ⊢ e : s Γ ⊢ s ⪯ t

Γ ⊢ e : t
T-SUB

Γ ⊢ ex : tx
Γ ⊢ e : x:tx → t

Γ ⊢ e ex : ∃x:tx. t
T-APP

Γ ⊢w tx : kx

∀y ̸∈ Γ.y : tx,Γ ⊢ e[y/x] : t [y/x]

Γ ⊢ λx.e : x:tx → t
T-ABS

∀α
′ ̸∈ Γ.

α
′ :k,Γ ⊢ e[α′/α] : t[α′/α]

Γ ⊢ Λα:k.e : ∀α:k. t
T-TABS

Γ ⊢w t : k
Γ ⊢ e : ∀α:k.s
Γ ⊢ e[t] : s[t/α]

T-TAPP

Γ ⊢ ex : tx Γ ⊢w t : k
∀y ̸∈ Γ.y : tx,Γ ⊢ e[y/x] : t [y/x]

Γ ⊢ let x = ex in e : t
T-LET

Γ ⊢ e : Bool {x : p} Γ ⊢w t : k

∀y ̸∈ Γ. y :Bool{x : p∧ x}, Γ ⊢ e1 : t

∀y ̸∈ Γ. y :Bool{x : p∧¬x}, Γ ⊢ e2 : t

Γ ⊢ if e then e1 else e2 : t
T-IF

Figure 3.6: Typing rules. The judgment Γ ⊢F e : τ is defined by excluding the gray boxes.

λRF extensions.

Typing Primitives The type of a built-in primitive c is given by the function ty(c), which

is defined for every constant of our system. Below we present essential examples of the ty(c)

definition.

ty(true)
.
= Bool{x : x = true} ty(∧) .

= x:Bool→ y:Bool→ Bool{v : v = x∧ y}

ty(3) .
= Int{x : x = 3} ty(≤)

.
= ∀α:B.x:α → y:α → Bool{v : v = (x ≤ y)}

ty(m≤)
.
= y:Int→ Bool{v : v = (m ≤ y)} ty(=)

.
= ∀α:B.x:α → y:α → Bool{v : v = (x = y)}

29

We note that the = used in the refinements is the polymorphic equals with type applications

elided. Further, we use m≤ to represent an arbitrary member of the infinite family of primitives

0≤, 1≤, 2≤, For λF we erase the refinements using ⌊ty(c)⌋. The rest of the definition is

similar.

Our choice to make the typing and reduction of constants external to our language, i.e.

given by the functions ty(c) and δ(c), makes our system easily extensible with further constants,

including a terminating fix constant to encode induction. The requirement, for soundness, is that

these two functions together satisfy the following four conditions.

Requirement 3.2. (Primitives) For every primitive c,

1. If ty(c) = b{x : p}, then ∅ ⊢w ty(c) : B and ∅ ⊢ true⇒ p[c/x].

2. If ty(c) = x:tx → t or ty(c) = ∀α:k. t, then ∅ ⊢w ty(c) : ⋆.

3. If ty(c) = x:tx → t, then for all vx such that ∅ ⊢ vx : tx, ∅ ⊢ δ(c,vx) : t[vx/x].

4. If ty(c) = ∀α:k. t, then for all tα such that ∅ ⊢w tα : k, ∅ ⊢ δT (c, tα) : t[tα/α].

Theorem 3 of [51] proves that a terminating fix constant satisfies requirement 3.2.

To type constants, rule T-PRIM gives the type ty(c) to any built-in primitive c, in any

context. The typing rules for boolean and integer constants are included in T-PRIM.

Typing Variables with Selfification Rule T-VAR establishes that any variable x that

appears as x : t in environment Γ can be given the selfified type [35] self(t,x,k) provided that

Γ ⊢w t : k. This rule is crucial in practice, to enable path-sensitive “occurrence” typing [49], where

the types of variables are refined by control-flow guards. For example, suppose we want to

establish α :B ⊢ (λx.x) : x:α → α{y : x = y}, and not just α :B ⊢ (λx.x) : α → α. The latter would

result if T-VAR merely stated that Γ ⊢ x : t whenever x : t ∈ Γ. Instead, we strengthen the T-VAR

rule to be selfified. Informally, to get information about x into the refinement level, we need to

say that x is constrained to elements of type α that are equal to x itself. In order to express the

30

exact type of variables, below we define the “selfification” function that strengthens a refinement

with the condition that a value is equal to itself. Since abstractions do not admit equality, we only

selfify the base types and the existential quantifications of them.

self(∃z:tz. t,x,k)
.
= ∃z:tz.self(t,x,k) self(b{z : p},x,B) .

= b{z : p∧ z = x}

self(x:tx → t,_,_) .
= x:tx → t self(b{z : p},x,⋆) .

= b{z : p}

self(∀α:k. t,_,_) .
= ∀α:k. t

Typing Applications with Existentials Our rule T-APP states the conditions for typing a

term application e ex. Under the same environment, we must be able to type e at some function

type x:tx → t and ex at tx. Then we can give e ex the existential type ∃x:tx. t. The use of existential

types in rule T-APP is one of the distinctive features of our language and was introduced

by Knowles and Flanagan [26]. As overviewed in § 2.3.2, we chose this form of T-APP over the

conventional form of Γ ⊢ e ex : t[ex/x] because our version prevents the substitution of arbitrary

expressions (e.g. functions and type abstractions) into refinements. As an alternative, we could

have used ANF (A-Normal Form [16]), but our metatheory would be more complex since ANF is

not preserved under the small step operational semantics.

Other Typing Rules Rule T-ABS says that we can type a lambda abstraction λx.e at

a function type x:tx → t whenever tx is well-formed and the body e can be typed at t in the

environment augmented by binding a fresh variable to tx. Our rule T-TAPP states that whenever a

term e has polymorphic type ∀α:k.s, then for any well-formed type t with kind k, we can give the

type s[t/α] to the type application e[t]. For the λF variant of T-TAPP, we erase the refinements

(via ⌊t⌋) before checking well-formedness and performing the substitution. The rule T-TABS

establishes that a type-abstraction Λα:k.e can be given a polymorphic type ∀α:k. t in some Γ

whenever e can be given the well-formed type t in Γ augmented by binding a fresh type variable to

kind k. Next, rule T-LET states that an expression let x = ex in e has type t in some environment

whenever t is well-formed, ex can be given some type tx, and the body e can be given type t in

31

the environment augmented by binding a fresh variable to tx. Rule T-ANN establishes that an

explicit annotation e : t indeed has type t when the underlying e has type t and t is well-formed.

The λF version of the rule erases the refinements and uses ⌊t⌋. Rule T-IF states that a conditional

expression if e then e1 else e2 has the type t when the guard e can be given type Bool refined

by p and e1 (resp. e2) can be given type t in the environment Γ augmented by the knowledge we

have about the type and semantics of the guard e. The extension of the environment Γ with a

fresh variable that captures the semantics of the guard when checking the two paths is critical to

permit path-sensitive reasoning. Finally, rule T-SUB tells us that we can exchange a subtype s for

a supertype t in a judgment Γ ⊢ e : t provided t is well-formed and Γ ⊢ s ⪯ t, which we present

next.

3.3.3 Subtyping

The subtyping judgment Γ ⊢ s ⪯ t, defined in Figure 3.7, stipulates that the type s is a

subtype of the type t in the environment Γ and is used in the subsumption typing rule T-SUB

(of Figure 3.6).

Subtyping Rules The rule S-FUN states that one function type x1 :tx1 → t1 is a subtype

of another function type x2 :tx2 → t2 in a given environment Γ when both tx2 is a subtype of tx1

and t1 is a subtype of t2 when we augment Γ by binding a fresh variable to type tx2. As usual,

function subtyping is contravariant in the input type and covariant in the outputs. Rules S-BIND

and S-WIT establish subtyping for existential types [26], resp. when the existential appears on

the left or right. Rule S-BIND allows us to exchange a universal quantifier (a variable bound

to some type tx in the environment) for an existential quantifier. If we have a judgment of the

form y : tx,Γ ⊢ t[y/x]⪯ t ′ where y does not appear free in either t ′ or in the context Γ, then we can

conclude that ∃x:tx. t is a subtype of t ′. Rule S-WIT states that if type t is a subtype of t ′[vx/x] for

some value vx of type tx, then we can discard the specific witness for x and quantify existentially

to obtain that t is a subtype of ∃x:tx. t ′. Rule S-POLY states that one polymorphic type ∀α:k. t1 is

32

Subtyping Γ ⊢ s ⪯ t

∀y ̸∈ Γ. y :b,Γ ⊢ p1[y/x]⇒ p2[y/x]
Γ ⊢ b{x : p1} ⪯ b{x : p2}

S-BASE

Γ ⊢ tx2 ⪯ tx1 ∀y ̸∈ Γ. y : tx2,Γ ⊢ t1[y/x]⪯ t2[y/x]
Γ ⊢ x:tx1 → t1 ⪯ x:tx2 → t2

S-FUN

Γ ⊢ vx : tx Γ ⊢ t ⪯ t ′[vx/x]
Γ ⊢ t ⪯ ∃x:tx. t ′

S-WIT
∀y ̸∈ free(t)∪Γ. y : tx,Γ ⊢ t[y/x]⪯ t ′

Γ ⊢ ∃x:tx. t ⪯ t ′
S-BIND

∀α
′ ̸∈ Γ. α

′ :k,Γ ⊢ t1[α′/α]⪯ t2[α′/α]

Γ ⊢ ∀α:k. t1 ⪯ ∀α:k. t2
S-POLY

Figure 3.7: Subtyping Rules.

a subtype of another polymorphic type ∀α:k. t2 in some environment Γ, when t1 is a subtype of t2

in the environment Γ augmented by binding a fresh type variable to kind k.

Refinements enter the scene in the rule S-BASE which specifies that a refined base type

b{x : p1} is a subtype of another b{x : p2} in context Γ when p1 implies p2 in the environment Γ

augmented by binding a fresh variable to the unrefined type b.

3.3.4 Implication

The implication judgment Γ ⊢ p1 ⇒ p2 states that the implication p1 ⇒ p2 holds under the

assumptions captured by the context Γ. In refinement type implementations [48, 50], this relation

is implemented as an external automated (usually SMT) solver. Since external solvers are not easy

to encode in mechanized proofs, we follow an approach that decouples the mechanization from

the implementation. Concretely, first we define the interface of the implication (§ 3.3.4.1) that

precisely captures all the requirements that the implication judgment should satisfy to establish

the soundness of λRF . Then, we define two alternative implementations of the interface: a logical

33

implementation (§ 3.3.4.2) that is used in refinement type implementations and a denotational

implementation (§ 3.3.4.3) that we used to complete our mechanized proof.

3.3.4.1 Implication’s Interface

In our mechanization, following Lehmann and Tanter [27], we encode implication as an

axiomatized judgment that satisfies the requirements below.

Requirement 3.3 (Implication Interface). The implication relation satisfies the below statements:

1. (Reflexivity) Γ ⊢ p ⇒ p.

2. (Transitivity) If Γ ⊢ p1 ⇒ p2 and Γ ⊢ p2 ⇒ p3, then Γ ⊢ p1 ⇒ p3.

3. (Faithfulness) Γ ⊢ p ⇒ true.

4. (Introduction) If Γ ⊢ p1 ⇒ p2 and Γ ⊢ p1 ⇒ p3, then Γ ⊢ p1 ⇒ p2 ∧ p3.

5. (Conjunction) Γ ⊢ p1 ∧ p2 ⇒ p1 and Γ ⊢ p1 ∧ p2 ⇒ p2.

6. (Repetition) Γ ⊢ p1 ∧ p2 ⇒ p1 ∧ p1 ∧ p2.

7. (Evaluation) If p1 ↪→∗ p2, then Γ ⊢ p1 ⇒ p2 and Γ ⊢ p2 ⇒ p1.

8. (Narrowing) If Γ1,x : tx,Γ2 ⊢ p1 ⇒ p2 and Γ2 ⊢ sx ⪯ tx, then Γ1,x :sx,Γ2 ⊢ p1 ⇒ p2.

9. (Weaken) If Γ1,Γ2 ⊢ p1 ⇒ p2, a,x ̸∈ Γ, then Γ1,x : tx,Γ2 ⊢ p1 ⇒ p2 and Γ1,a :k,Γ2 ⊢ p1 ⇒

p2.

10. (Subst I) If Γ1,x : tx,Γ2 ⊢ p1 ⇒ p2 and Γ2 ⊢ vx : tx, then Γ1[vx/x],Γ2 ⊢ p1[vx/x]⇒ p2[vx/x].

11. (Subst II) If Γ1,a :k,Γ2 ⊢ p1 ⇒ p2 and Γ2 ⊢w t : k, then Γ1[t/a],Γ2 ⊢ p1[t/a]⇒ p2[t/a].

12. (Strengthening) If y :b{x : q},Γ ⊢ p1 ⇒ p2, then y :b,Γ ⊢ q[y/x]∧ p1 ⇒ q[y/x]∧ p2.

34

This interface precisely explicates the requirements of the implication checker to establish the

soundness of the entire refinement type system. The first six statements are standard properties of

implication. Evaluation is used to prove that built-in constants satisfy the Requirement 3.2 and

the rest, as captured by their name, are required to prove the narrowing (5.10), weakening (5.9),

substitution (5.8) lemmas hold in λRF .

Our requirements are very similar to Assumption 1 of [26]. Our Strengthening and Subst

II cases are required for polymorphism, thus they do not appear in Knowles and Flanagan [26]’s

assumption. Instead, they require Consistency and Exact Quantification. We do not require Exact

Quantification since our relation captures the minimum requirements to prove soundness. Instead

of explicitly requiring Consistency, in § 3.3.4.3 we define (and mechanize) an implementation,

i.e. inhabitant, of the interface thus show our assumptions are consistent.

3.3.4.2 Logical Implementation (non-mechanized)

The logical implementation of Γ ⊢ p1 ⇒ p2 checks that the logical implication p1 ⇒ p2

is valid assuming the refinements of the base types in Γ:

|=LOGIC ∧{p[x/ν] | x :b{ν : p} ∈ Γ}⇒ p1 ⇒ p2

Γ ⊢ p1 ⇒ p2

I-LOG

This encoding is imprecise, since some information is ignored from the environment Γ, but

when the language of refinements is decidable, implication checking is also decidable and can

be efficiently checked by an SMT solver. LIQUIDHASKELL, for example, uses this encoding to

reduce type checking to decidable implications checked by Z3 [13], while the soundness of this

implementation (concretely statement 7 of Requirement 3.3) is hinted by Theorem 2 of [51]. Chen

[10] defines a mechanization of a refinement type system in Agda that uses a similar encoding of

implication where logical implications are checked using Agda’s logic.

35

Jb{x : p}K .
= {v |∅ ⊢F v : b ∧ p[v/x] ↪→∗ true}

Jx:tx → t K .
= {v |∅ ⊢F v : ⌊tx⌋ → ⌊t⌋ ∧ (∀vx ∈ J tx K.v vx ↪→∗ v′ s.t.v′ ∈ J t[vx/x]K}

J∃x:tx. t K
.
= {v |(∅ ⊢F v : ⌊t⌋) ∧ (∃vx ∈ J tx K.v ∈ J t[vx/x]K}

J∀α:k. t K .
= {v |(∅ ⊢F v : ∀α:k.⌊t⌋) ∧ (∀ tα.(∅ ⊢w tα : k)⇒ v[tα] ↪→∗ v′ s.t.v′ ∈ J t[tα/α]K}

JΓK .
= {θ |∀(x : t) ∈ Γ.θ(x) ∈ Jθ · t K ∧ ∀(α : k) ∈ Γ.∅ ⊢w θ(α) : k}.

Figure 3.8: Denotations of Types and Environments.

3.3.4.3 Denotational Implementation (mechanized)

The denotational implementation of Γ ⊢ p1 ⇒ p2 checks that if p1 evaluates to true, so

does p2.

∀θ∈JΓK. θ · p1 ↪→∗ true⇒ θ · p2 ↪→∗ true

Γ ⊢ p1 ⇒ p2

I-DEN

The refinements p1 and p2 are boolean expressions, so evaluation uses the operational semantics

of Figure 3.3. But, they are open expressions with variables bound in Γ, so before evaluation we

apply the closing substitution θ that belongs to the denotation of Γ, as defined next.

Closing Substitutions A closing substitution is a sequence of value bindings to variables:

θ = (x1 7→ v1, . . . , xn 7→ vn,α1 7→ t1, . . . , αm 7→ tm) with all xi, α j distinct. We write θ(x) to refer

to vi if x = xi and we use θ(α) to refer to t j if α = α j. We define θ · t to be the type derived from t

by substituting for all variables in θ: θ · t .
= t[v1/x1] · · · [vn/xn][t1/α1] · · · [tm/αm].

Denotational Semantics Figure 3.8 defines the denotations of types and environments. Follow-

ing Flanagan [15], each closed type has a denotation J t K containing the set of closed values of

the appropriate base type which satisfy the type’s refinement predicate. (The denotation of a type

variable α is not defined as we only require denotations for closed types.) We lift the notion of

denotations to environments JΓK as the set of closing substitutions, i.e. value and type bindings

for the variables in Γ, such that the values respect the denotations of the respective Γ-bound types

36

and the types are well-formed with respect to the corresponding kinds.

Revisiting rule I-DEN The premise of the rule I-DEN quantifies over all closing substitu-

tions in the denotations of the typing environment (i.e. ∀θ∈ JΓK). This quantification has two

consequences.

First, the environment denotation appears in a negative position on the premise of the

rule. Inspecting Figure 3.8, the environment denotation uses the type denotation, which in turn

uses type checking, thus rendering a potential circularity between type and implication checking

(arrow 6 of Figure 2.2). Because of the negative occurrence, this mutual dependency would lead

to a non-monotonic and thus non-well defined system. To break this circularity, we use λF ’s type

checking in the definition of type denotations.

Second, the quantification is over all closing substitutions which are infinite. For example,

a typing environment that binds x to an integer (i.e. x :Int ∈ Γ) has infinitely many closing

substitutions mapping x to a different integer. Thus, the denotational implementation cannot be

used to implement a decidable type checker. On the positive side, the denotational implementation

connects implication checking to the operational semantics thus it is amicable to mechanization.

Concretely, we proved (§ 7.2) that the denotational implementations satisfies the statements

of Requirement 3.3.

Acknowledgements for Chapter 3

This chapter is adapted from “Mechanizing Refinement Types” in the proceedings of

the 51st ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2024),

by Michael Borkowski, Niki Vazou, and Ranjit Jhala. The dissertation author was the primary

investigator and author of this material.

37

Chapter 4

λF Soundness

Next, we present the metatheory of the underlying (unrefined) λF . Even though it follows

the textbook techniques of Pierce [38], it is a convenient stepping stone towards the metatheory

for (refined) λRF . In addition, the soundness results for λF are used for our full metatheory,

as our well-formedness judgments require the refinement predicate to have the λF type Bool

thereby avoiding the circularity of using a regular typing judgment in the antecedents of the well-

formedness rules. The light grey boxes in Figure 5.1 show the high level outline of the metatheory

for λF which provides a miniaturized model for λRF but without the challenges of subtyping

and existentials. Next, we describe the top-level type safety result, how it is decomposed into

progress (Lemma 4.2) and preservation (Lemma 4.6) lemmas, and the various technical results

that support the lemmas.

Because the syntax of λF is identical to the syntax of λRF , we have the slight complication

that refinements still appear in our terms. Therefore, in this chapter we continue to use t, t ′, . . .

in our definitions and theorems to denote the refined types of λRF that will be used in type

annotations e : t and type applications e[t]. To avoid confusion in the development of the unrefined

metatheory, we will use τ,τ′, . . . for λF types.

38

Well-formed (Unrefined) Types Γ ⊢F
w τ : k

b ∈ {Bool,Int}
Γ ⊢F

w b : B
WFFT-BASIC

α :k ∈ Γ

Γ ⊢F
w α : k

WFFT-VAR
Γ ⊢F

w τ : B

Γ ⊢F
w τ : ⋆

WFFT-KIND

Γ ⊢F
w τx : kx

Γ ⊢F
w τ : k

Γ ⊢F
w τx → τ : ⋆

WFFT-FUNC
∀α

′ ̸∈ Γ. α
′ :k,Γ ⊢F

w τ[α′/α] : kτ

Γ ⊢F
w ∀α:k.τ : ⋆

WFFT-POLY

Figure 4.1: Well-formedness of λF types.

4.1 Static Semantics

The small-step semantics for λF are identical to those of λRF (because the syntax is

unchanged), but the well-formedness and typing rules consist of those in Figures 3.5 and 3.6 with

the parts in gray erased. For clarity, and to make this chapter self-contained, we present the λF

rules for well-formedness in Figure 4.1 and the rules for typing in Figure 4.2.

4.2 Metatheory for λF

The main type safety theorem for λF states that a well-typed term does not get stuck: i.e.

either evaluates to a value or can step to another term (progress) of the same type (preservation).

The judgment Γ ⊢F e : τ is defined in fig. 4.2, and for clarity we use τ for λF types and t for the

λRF types that appear in user annotations and in type applications.

Theorem 4.1. (Type Safety of λF)

1. (Type Safety) If ∅ ⊢ e : τ and e ↪→∗ e′, then e′ is a value or e′ ↪→ e′′ for some e′′.

2. (No Error) If ∅ ⊢ e : τ and e ↪→∗ e′, then e′ ̸= error.

Proof. (1) We proceed by induction on the number of steps in e ↪→∗ e′. There are two cases for

e ↪→∗ e′: either e = e′ or there exists a term e1 such that e ↪→ e1 ↪→∗ e′. In the former case we

39

Typing Γ ⊢F e : τ

Γ ⊢F c : ⌊ty(c)⌋
FT-PRIM

x :τ ∈ Γ

Γ ⊢F
w τ : k

Γ ⊢F x : τ
FT-VAR

Γ ⊢F e : ⌊t⌋
Γ ⊢F

w ⌊t⌋ : k
Γ ⊢F e : t : ⌊t⌋

FT-ANN

Γ ⊢F ex : τx
Γ ⊢F e : τx → τ

Γ ⊢F e ex : τ
FT-APP

Γ ⊢F
w τx : kx

∀y ̸∈ Γ.y :τx,Γ ⊢ e[y/x] : τ

Γ ⊢ λx.e : τx → τ
FT-ABS

Γ ⊢F
w ⌊t⌋ : k

Γ ⊢ e : ∀α:k.τ′

Γ ⊢ e[t] : τ
′[⌊t⌋/α]

FT-TAPP

∀α
′ ̸∈ Γ.

α
′ :k,Γ ⊢ e[α′/α] : τ[α′/α]

Γ ⊢ Λα:k.e : ∀α:k.τ
FT-TABS

Γ ⊢ ex : τx
∀y ̸∈ Γ.y :τx,Γ ⊢ e[y/x] : τ

Γ ⊢ let x = ex in e : τ
FT-LET

Γ ⊢ e : Bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if e then e1 else e2 : τ
FT-IF

Figure 4.2: Unrefined typing rules.

40

conclude immediately by the Progress Lemma (4.2 below). In the latter case, ∅ ⊢F e1 : τ by the

Preservation Lemma (4.6). Then by the inductive hypothesis applied to the reduction sequence

e1 ↪→∗ e′, we conclude that either e′ is a value or e′ ↪→ e′′ for some e′′ as desired.

(2) The second statement follows immediately from the first: we know that either e′ is

a value and cannot be error or e′ can take a step. But no rule in Figure 3.3 can be applied to

reduce error.

As mentioned in the proof above, we prove type safety by induction on the length of the

sequence of steps comprising e ↪→∗ e′, using the preservation and progress lemmas.

4.2.1 Progress

The progress lemma says a well-typed term is a value or steps to some other term.

Lemma 4.2. (Progress) If ∅ ⊢F e : τ, then e is a value or e ↪→ e′ for some e′.

Proof. We proceed by induction of the structure of ∅ ⊢F e : τ. In the cases of rule FT-PRIM,

FT-VAR, FT-ABS, or FT-TABS, e is a value.

Case FT-APP: We have ∅ ⊢F e : τ where e ≡ e1 e2. Inverting, we have that there exists some

type τ2 such that ∅ ⊢F e1 : τ2 → τ and ∅ ⊢F e2 : τ2. We split on five possible cases for the

structure of e1 and e2. First, suppose e1 ≡ λx.e0 and e2 is a value. Then by rule E-APP,

e ≡ λx.e0 e2 ↪→ e0[e2/x]. Second, suppose e1 ≡ λx.e0 and e2 is not a value. Then by the

inductive hypothesis, there exists a term e′2 such that e2 ↪→ e′2. Then by rule E-PRAPP

e ≡ λx.e0 e2 ↪→ λx.e0 e′2. Third, suppose e1 ≡ c, a built-in primitive and e2 is a value. Then

by rule E-PRIM, e ≡ c e2 ↪→ δ(c,e2), which is well-defined by the Primitives Lemma (4.5).

Fourth, suppose e1 ≡ c and e2 is not a value. Then by the inductive hypothesis, there exists

a term e′2 such that e2 ↪→ e′2. Then by rule E-PRAPP e ≡ c e2 ↪→ c e′2. Finally, by the

Canonical Forms Lemma (4.3), e1 cannot be any other value, so it must not be a value. Then

41

by the inductive hypothesis, there is a term e′1 such that e1 ↪→ e′1. Then by rule E-PLAPP,

e ≡ e1 e2 ↪→ e′1 e2.

Case FT-TAPP: We have ∅ ⊢F e : τ where e ≡ e1[t] and τ ≡ σ[⌊t⌋/α]. Inverting, we have

that ∅ ⊢F e1 : ∀α:k.σ. We split on three cases for the structure of e1. First, suppose

e1 ≡ Λα′ :k′.e0. Then by rule E-TAPP, e ≡ Λα′ :k′.e0[t] ↪→ e0[t/α′]. Second, suppose

e1 ≡ c, a built-in primitive. Then by rule E-TPRIM, e ≡ c[t] ↪→ δT (c,⌊t⌋), which is well-

defined by the Primitives Lemma (4.5). Finally, by the Canonical Forms Lemma (4.3),

e1 cannot be any other form of value, so it must not be a value. Then by the inductive

hypothesis, there is a term e′1 such that e1 ↪→ e′1. Then by rule E-PTAPP e ≡ e1[t] ↪→ e′1[t].

Case FT-LET: We have ∅ ⊢F e : τ where e ≡ let x = e1 in e2. Inverting, we have that ∅ ⊢F e1 :

τ1 for some type τ1. By the inductive hypothesis, either e1 is a value or there is a term e′1

such that e1 ↪→ e′1. In the former case, rule E-LET gives us e≡ let x = e1 in e2 ↪→ e2[e1/x].

In the latter case, by rule E-PLET, e ≡ let x = e1 in e2 ↪→ let x = e′1 in e2.

Case FT-ANN: We have ∅ ⊢F e : τ where e ≡ e1 : t. Inverting, we have the ∅ ⊢F e1 : τ and

τ = ⌊t⌋. By the inductive hypothesis, either e1 is a value or there is a term e′1 such that

e1 ↪→ e′1. In the former case, by rule E-ANN, e ≡ e1 : t ↪→ e1. In the latter case, rule

E-PANN gives us e ≡ e1 : t ↪→ e′1 : t.

Case FT-IF: We have ∅ ⊢F e : τ where e ≡ if e then e1 else e2. Inverting, we have that

∅ ⊢F e : Bool. By the inductive hypothesis, either e is a value or there is a term e′ such

that e ↪→ e′. In the former case, by the Canonical Forms Lemma (4.3), we have that

e = true or e = false, and so either e ≡ if true then e1 else e2 ↪→ e1 by rule E-IFT

or (respectively) e ≡ if false then e1 else e2 ↪→ e2 by rule E-IFF. In the latter case, by

rule E-PIF, e ≡ if e then e1 else e2 ↪→ if e′ then e1 else e2.

42

The proof of progress given above requires a Canonical Forms lemma (lemma 4.3) which

describes the shape of well-typed values and some key properties about the built-in Primitives

(lemma 4.5). We also implicitly use an Inversion of Typing lemma (lemma 4.4) which describes

the shape of the type of well-typed terms and its subterms. For λF , unlike λRF , this lemma is

trivial because the typing relation is syntax-directed.

Lemma 4.3. (Canonical Forms)

1. If ∅ ⊢F v : Bool, then v = true or v = false.

2. If ∅ ⊢F v : Int, then v is an integer constant.

3. If ∅ ⊢F v : τ → τ′, then either v = λx.e or v = c, a constant function where c ∈ {∧,∨,¬,↔}.

4. If ∅ ⊢F v : ∀α:k.τ, then either v = Λα:k.e or v = c, a polymorphic constant c ∈ {≤,=}.

5. If ∅ ⊢F
w τ : B, then τ = Bool or τ = Int.

Proof. Parts (1) - (4) are easily deduced from the λF typing rules in Figure 3.6 and the definition

of ty(c). Part (5) is clear from the well-formedness rules in Figure 3.5.

We note that Lemma 4.3 is sufficient for our λRF metatheory. Our syntactic typing

judgments in λRF respect those of λF . Specifically, if Γ ⊢ e : t and ⊢w Γ, then ⌊Γ⌋ ⊢F e : ⌊t⌋.

Therefore, we do not have to state and prove a separate Canonical Forms Lemma for λRF .

Lemma 4.4. (Inversion of Typing)

1. If Γ ⊢F c : τ, then τ = ⌊ty(c)⌋.

2. If Γ ⊢F x : τ, then x :τ ∈ Γ.

3. If Γ ⊢F e ex : τ, then there exists type τx such that Γ ⊢F e : τx → τ and Γ ⊢F ex : τx.

4. If Γ ⊢F λx.e : τ, then τ = τx → τ′ and y :τx,Γ ⊢F e[y/x] : τ′ for any y ̸∈ Γ and well-formed

τx.

43

5. If Γ ⊢F e[t] : τ, then there exists type σ and kind k such that Γ ⊢F e : ∀α:k.σ and τ =

σ[⌊t⌋/α].

6. If Γ ⊢F Λα:k.e : τ, then there exists type τ′ and kind k such that τ = ∀α:k.τ′ and α′ :k,Γ ⊢F

e[α′/α] : τ′[α′/α] for some α′ ̸∈ Γ.

7. If Γ ⊢F let x = ex in e : τ, then there exists type τx and y ̸∈ Γ such that Γ ⊢F ex : τx and

y :τx,Γ ⊢F e[y/x] : τ.

8. If Γ ⊢F e : t : τ, then τ = ⌊t⌋ and Γ ⊢F e : τ.

9. If Γ ⊢F if e then e1 else e2 : τ, then Γ ⊢F e : Bool, Γ ⊢F e1 : τ, and Γ ⊢F e2 : τ.

Proof. This is clear from the definition of the typing rules for λF . Each premise can match only

one rule because the λF rules are syntax directed.

The Inversion of Typing Lemma does not hold in λRF due to the subtyping relation. For

instance x :Int{ν : ν = 5} ⊢ x : Int but x :Int ̸∈ x :Int{ν : ν = 5}. In Lemma 5.7 we state and

prove an analogous result for λRF in the two cases needed to prove progress and preservation.

For each primitive constant or function, we need to know that the type ⌊ty(c)⌋ relates to

the λF type of δ(c,v) in the same manner as FT-APP.

Lemma 4.5. (Primitives) For each built-in primitive c,

1. If ⌊ty(c)⌋= τx → τ and ∅ ⊢F vx : τx, then ∅ ⊢F δ(c,vx) : τ.

2. If ⌊ty(c)⌋= ∀α:k.τ and ∅ ⊢w τα : k, then ∅ ⊢F δT (c,τα) : τ[τα/α].

Proof. 1. First consider c ∈ {∧,∨,¬}. Then ⌊ty(c)⌋ = Bool → Bool → Bool. Then by

Lemma 4.3, ∅ ⊢F v : Bool gives us that v = true or v = false. For each possibility for c

and v, we can build a judgment that ∅ ⊢F δ(c,v) : Bool→ Bool. Similarly, if c = ¬ then

⌊ty(c)⌋= Bool→ Bool and δ(¬,v) ∈ {true,false} can be typed at Bool. The analysis

for the other monomorphic primitives is entirely similar.

44

2. Here c is the polymorphic = and ⌊ty(c)⌋= ∀α:B.α → α → Bool. By the Canonical Forms

Lemma, τ = Bool or τ = Int. In the former case, δT (c,Bool) =↔, which we can type

at Bool→ Bool→ Bool= ⌊ty(c)⌋[Bool/α]. The case of Int is entirely similar because

δT (c,Int) is the monomorphic integer equality.

4.2.2 Preservation

The preservation lemma states that λF typing is preserved by evaluation.

Lemma 4.6. (Preservation) If ∅ ⊢F e : τ and e ↪→ e′, then ∅ ⊢F e′ : τ.

Proof. We proceed by induction of the structure of ∅ ⊢F e : τ. The cases of rules FT-PRIM,

FT-VAR, FT-ABS, or FT-TABS cannot occur because e is a value and no value can take a

step in our semantics. The interesting cases are for FT-APP and FT-TAPP. For applications

of primitives, preservation requires the Primitives Lemma 4.5, while the general case needs a

Substitution Lemma 4.7. We now give the full details of the other five cases:

Case FT-APP: We have ∅ ⊢F e : τ where e ≡ e1 e2. Inverting, we have that there exists some

type τ2 such that ∅ ⊢F e1 : τ2 → τ and ∅ ⊢F e2 : τ2. We split on five possible cases for the

structure of e1 and e2. First, suppose e1 ≡ λx.e0 and e2 is a value. Then by rule E-APP

and the determinism of our semantics, e′ ≡ e0[e2/x]. By the Inversion of Typing (4.4),

for some y we have y :τ2 ⊢F e0[y/x] : τ. By the Substitution Lemma (4.7), substituting

e2 through for y gives us ∅ ⊢F e0[e2/x] : τ as desired because e0[y/x][e2/y] = e0[e2/x].

Second, suppose e1 ≡ λx.e0 and e2 is not a value. Then by the progress lemma (4.2), there

exists a term e′2 such that e2 ↪→ e′2. Then by rule E-PRAPP and the determinism of our

semantics, e′ ≡ λx.e0 e′2. Now, by the inductive hypothesis, ∅ ⊢F e′2 : τ2. Applying rule

FT-APP, ∅ ⊢F e1 e′2 : τ as desired. Third, suppose e1 ≡ c, a built-in primitive, and e2 is

a value. Then by rule E-PRIM and the determinism of the semantics, e′ ≡ δ(c,e2). By

45

the primitives lemma, ∅ ⊢F δ(c,e2) : τ as desired. Fourth, suppose e1 ≡ c and e2 is not a

value. Then we argue in the same manner as the second case. Finally, by the canonical

forms lemma, e1 cannot be any other value, so it must not be a value. Then by the progress

lemma, there is a term e′1 such that e1 ↪→ e′1. Then by rule E-PLAPP and the determinism

of the semantics, e′ ≡ e′1 e2. By the inductive hypothesis, ∅ ⊢F e′1 : τ2 → τ. Applying rule

FT-APP, ∅ ⊢F e′1 e2 : τ as desired.

Case FT-TAPP: We have ∅ ⊢F e : τ where e ≡ e1[t] and τ ≡ σ[⌊t⌋/α]. Inverting (4.4), we have

that ∅ ⊢F e1 : ∀α:k.σ and ∅ ⊢F
w ⌊t⌋ : k. We split on three cases for the structure of e1.

First, suppose e1 ≡ Λα:k.e0. Then by rule E-TAPP and the determinism of the semantics,

e′ ≡ e0[t/α]. By the inversion of typing, for some α′, we have α′ :k ⊢F e0[α
′/α] : σ[α′/α].

By the Substitution Lemma (4.7), substituting ⌊t⌋ through for α gives us ∅ ⊢F e0[t/α] :

σ[⌊t⌋/α] as desired. Second, suppose e1 ≡ c, a built-in primitive. Then by rule E-TPRIM

and the determinism of the semantics, e′ ≡ δT (c,⌊t⌋). By the primitives lemma, ∅ ⊢F

δT (c,⌊t⌋) : σ[⌊t⌋/α]. Finally, by the canonical forms lemma, e1 cannot be any other form

of value, so it must not be a value. Then by the progress lemma, there is a term e′1 such

that e1 ↪→ e′1. Then by rule E-PTAPP and the deterministic semantics e′ ≡ e′1[t]. By the

inductive hypothesis, ∅ ⊢F e′1 : ∀α:k.σ. Applying rule FT-TAPP, ∅ ⊢F e′1[t] : σ[⌊t⌋/α] as

desired.

Case FT-LET: We have ∅ ⊢F e : τ where e ≡ let x = e1 in e2. Inverting, we have that y :τ1 ⊢F

e2[y/x] : τ and ∅ ⊢F e1 : τ1 for some type τ1. By the progress lemma either e1 is a value

or there is a term e′1 such that e1 ↪→ e′1. In the former case, rule E-LET and determinism

give us e′ ≡ e2[e1/x]. By the Substitution Lemma (substituting e1 for x), we have ∅ ⊢F

e2[e1/x] : τ as desired because e2[e1/x] = e2[y/x][e1/y]. In the latter case, by rule E-PLET

and determinism give us, e′ ≡ let x = e′1 in e2. By the inductive hypothesis we have that

∅ ⊢F e′1 : τ1 and by rule FT-LET we have ∅ ⊢F let x = e′1 in e2 : τ.

46

Case FT-ANN: We have ∅ ⊢F e : τ where e ≡ e1 : t. Inverting, we have the ∅ ⊢F e1 : τ and

τ = ⌊t⌋. By the progress lemma, either e1 is a value or there is a term e′1 such that e1 ↪→ e′1.

In the former case, by rule E-ANN and the determinism of the semantics, e′ ≡ e1. Then

we already have that ∅ ⊢F e′ : τ In the latter case, rule E-PANN and determinism give us

e′ ≡ e′1 : t. By the inductive hypothesis we have that ∅ ⊢F e′1 : τ. By rule FT-ANN we

conclude ∅ ⊢F e′1 : t : τ.

Case FT-IF: We have ∅ ⊢F e : τ where e ≡ if e0 then e1 else e2. Inverting, we have that

∅ ⊢F e0 : Bool and ∅ ⊢F e1 : τ, and ∅ ⊢F e2 : τ. By the progress lemma either e0 is a

value or there is a term e′0 such that e0 ↪→ e′0. In the former case, the Canonical Forms

Lemma (4.3) tells us that e0 = true or false. By determinism of the semantics we

have that e′ ≡ e1 or e′ ≡ e2 respectively. In either case we can immediately conclude

that e′ has the desired type. In the latter case above, rule E-PIF and determinism give us,

e′ ≡ if e′0 then e′1 else e2. By the inductive hypothesis we have that ∅ ⊢F e′0 : Bool and

by rule FT-IF we have ∅ ⊢F if e′0 then e1 else e2 : τ.

The proof of preservation for λRF differs in two cases above. In T-APP and T-TAPP, we

must use the Inversion of Typing lemma (5.7) from λRF because the presence of rule T-SUB

prevents us from inferring the last rule used to type a term or type abstraction. Furthermore, in

case T-APP the substitution lemma would give us that ∅ ⊢ e′ : t[vx/x] for some value vx. However,

we need to show preservation of the existential type ∃x:tx. t. This is done by using rule S-WIT to

show that, in fact, ∅ ⊢ t[vx/x]⪯ ∃x:tx. t.

Substitution Lemma To prove type preservation when a lambda or type abstraction is

applied, we proved that the substituted result has the same type, as established by the Substitution

Lemma:

Lemma 4.7. (Substitution) If Γ ⊢F vx : τx and Γ ⊢F
w ⌊tα⌋ : kα, then

47

1. if Γ′,x :τx,Γ ⊢F e : τ and ⊢w Γ, then Γ′,Γ ⊢F e[vx/x] : τ and

2. if Γ′,α :kα,Γ ⊢F e : τ and ⊢w Γ, then Γ′[⌊tα⌋/α],Γ ⊢F e[tα/α] : τ[⌊tα⌋/α].

Proof. We give the proofs for part (2); part (1) is similar but slightly simpler because term

variables do not appear in types in λF We proceed by induction on the derivation tree of the typing

judgment Γ′,α :kα,Γ ⊢F e : τ.

Case FT-PRIM: We have e ≡ c and Γ′,α :kα,Γ ⊢F c : ⌊ty(c)⌋. Neither c nor ty(c) has any

free variables, so each is unchanged under substitution. Then by rule T-PRIM we conclude

Γ′[⌊tα⌋/α],Γ ⊢F c : ⌊ty(c)⌋ because the environment may be chosen arbitrarily.

Case FT-VAR: We have e ≡ x; by inversion, we get that x :τ ∈ Γ′,α :kα,Γ. We must have α ̸= x,

so there are two cases to consider for where x can appear in the environment. If x :τ ∈ Γ, then

τ cannot contain α as a free variable because x is bound first in the environment (which grows

from right to left). Then Γ′[⌊tα⌋/α],Γ ⊢F x : τ as desired because τ[⌊tα⌋/α] = τ. Otherwise,

x :τ ∈ Γ′ and so x :τ[⌊tα⌋/α] ∈ Γ′[⌊tα⌋/α],Γ. Thus Γ′[⌊tα⌋/α],Γ ⊢F x : τ[⌊tα⌋/α]. (In part (1), we

have an additional case where Γ′,x :τ,Γ ⊢F x : τ. We have x[vx/x] = vx, and so we can apply the

Weakening Lemma (4.8) to Γ ⊢F vx : τ to obtain Γ′,Γ ⊢F vx : τ.)

Case FT-APP: We have e ≡ e1 e2. By inversion, we have that Γ′,α :kα,Γ ⊢F e1 : τx → τ and

Γ′,α :kα,Γ ⊢F e2 : τx. Applying the inductive hypothesis to both of these, we get Γ′[⌊tα⌋/α],Γ ⊢F

e1[tα/α] : τx → τ[⌊tα⌋/α] and Γ′[⌊tα⌋/α],Γ ⊢F e2[tα/α] : τx[⌊tα⌋/α]. Combining these by rule

FT-APP, we conclude Γ′[⌊tα⌋/α],Γ ⊢F e1 e2[tα/α] : τ[⌊tα⌋/α].

Case FT-ABS: We have e ≡ λx.e1 and τ ≡ τx → τ1. By inversion we have that for any fresh y,

both y :τx,Γ
′,α :kα,Γ ⊢F e1[y/x] : τ1 and Γ′,α :kα,Γ ⊢F

w τx : kx. By the inductive hypothesis, and

the Substitution Lemma for well-formedness judgments, we have y :τx[⌊tα⌋/α],Γ′[⌊tα⌋/α],Γ ⊢F

e1[tα/α][y/x] : τ1[⌊tα⌋/α] and Γ′[⌊tα⌋/α],Γ ⊢F
w τx[⌊tα⌋/α] : kx, where we can switch the order of

substitutions because y does not appear free in the well-formed type tα. Then we can conclude by

applying rule FT-ABS that Γ′[⌊tα⌋/α],Γ ⊢F λx.e1[tα/α] : τx → τ1[⌊tα⌋/α].

48

Case FT-TAPP: We have e ≡ e′ [t ′] and τ ≡ τ′[⌊t ′⌋/α′]. By inversion, Γ′,α :kα,Γ ⊢F e′ : ∀α′ :k′.τ′

and Γ′,α :kα,Γ ⊢F
w ⌊t ′⌋ : k′. By the inductive hypothesis,

Γ′[⌊tα⌋/α],Γ ⊢F e′[tα/α] : ∀α′ :k′.τ′[⌊tα⌋/α] and Γ′[⌊tα⌋/α],Γ ⊢F
w ⌊t ′⌋[⌊tα⌋/α] : k′. By the def-

inition of refinement erasure, ⌊t⌋[⌊tα⌋/α′] = ⌊t ′[tα/α]⌋. By applying rule FT-TAPP, we get

Γ′[⌊tα⌋/α],Γ ⊢F e′[tα/α][t ′[tα/α]] : τ′[⌊tα⌋/α][⌊t ′[tα/α]⌋/α′]. By the definition of substitution

we have e′[tα/α][t ′[tα/α]] = e′[t ′][tα/α] and by the commutativity rules for substitution,

τ′[⌊tα⌋/α][⌊t ′[tα/α]⌋/α′] = τ′[⌊t ′⌋/α′][⌊tα⌋/α]. Therefore, we conclude that Γ′[⌊tα⌋/α],Γ ⊢F

e[tα/α] : τ[⌊tα⌋/α].

Case FT-TABS: We have Γ′,α :kα,Γ⊢F e : τ where e≡Λα0 :k′.e′ and τ≡∀α0 :k′.τ′. By inversion,

for any fresh type variable α′, α′ :k′,Γ′,α :kα,Γ ⊢F e′[α′/α0] : τ′[α′/α0] and α′ :k′,Γ′,α :kα,Γ ⊢F
w

τ′[α′/α0] : k′. By the inductive hypothesis

α
′ :k′,Γ′[⌊tα⌋/α],Γ ⊢F e′[α′/α0][tα/α] : τ

′[α′/α0][⌊tα⌋/α]

and by the Substitution Lemma for λF well-formedness judgments

α
′ :k′,Γ′[⌊tα⌋/α],Γ ⊢F

w τ
′[α′/α0][⌊tα⌋/α] : k′.

Because α′ is chosen to be fresh, we must have α ̸= α′ and α0 ̸= α′. Moreover, ⌊tα⌋ con-

tains only free variables from Γ, so e′[α′/α0][tα/α] = e′[tα/α][α′/α0] and τ′[α′/α0][⌊tα⌋/α] =

τ′[⌊tα⌋/α][α′/α0]. Then by rule FT-TABS,

Γ
′[⌊tα⌋/α],Γ ⊢F Λα0 :k′.(e′[tα/α]) : ∀α0 :k′.(τ′[⌊tα⌋/α]).

By definition of substitution, we can rewrite the above as

Γ
′[⌊tα⌋/α],Γ ⊢F (Λα0 :k′.e′)[tα/α] : (∀α0 :k′.τ′)[⌊tα⌋/α]

49

as desired.

Case FT-LET: We have e ≡ let x = e1 in e2 and by inversion we have that for some type

τ1, Γ′,α :kα,Γ ⊢F e1 : τ1 and for some y ̸∈ Γ′,α :kα,Γ, y :τ1,Γ
′,α :kα,Γ ⊢F e2[y/x] : τ. By the

inductive hypothesis, we have that Γ′[⌊tα⌋/α],Γ ⊢F e1[tα/α] : τ1[⌊tα⌋/α] and

y :τ1[tα/α],Γ′[⌊tα⌋/α],Γ ⊢F e2[tα/x] : τ[⌊tα⌋/α]. Then by rule FT-LET we conclude

Γ′[⌊tα⌋/α],Γ ⊢F let x = e1[tα/α] in e2[tα/α] : τ[⌊tα⌋/α].

Case FT-ANN: We have e ≡ e′ : t and by inversion we have that ⌊t⌋= τ and Γ′,α :kα,Γ ⊢F e′ : τ.

By the inductive hypothesis, we have Γ′[⌊tα⌋/α],Γ ⊢F e′[tα/α] : τ[⌊tα⌋/α]. By our definition of

refinement erasure, we have ⌊t[tα/α]⌋= ⌊t⌋[⌊tα⌋/α], and we have e′ : t[tα/α] = e′[tα/α] : t[tα/α].

Thus by rule FT-ANN, Γ′[⌊tα⌋/α],Γ ⊢F e′ : t[tα/α] : ⌊t⌋[⌊tα⌋/α].

Case FT-IF: We have e ≡ if e0 then e1 else e2 and by inversion we have that Γ′,α :kα,Γ ⊢F e0 :

Bool and Γ′,α :kα,Γ ⊢F e1 : τ and Γ′,α :kα,Γ ⊢F e2 : τ. By the inductive hypothesis, we have

Γ′[⌊tα⌋/α],Γ ⊢F e0[tα/α] : Bool and Γ′[⌊tα⌋/α],Γ ⊢F ei[tα/α] : τ[⌊tα⌋/α] for each i = 1,2. Then

by rule FT-IF we have

Γ
′[⌊tα⌋/α],Γ ⊢F if e0[tα/α] then e1[tα/α] else e2[tα/α] : τ[⌊tα⌋/α]

By the definition of substitution, we have the equality if e0[tα/α] then e1[tα/α] else e2[tα/α] =

(if e0 then e1 else e2)[tα/α], which gives us the desired judgment.

Because we encoded our typing rules using cofinite quantification the proof above does not

require a renaming lemma, but the rules that lookup environments (rules T-VAR and WF-VAR)

do need a Weakening Lemma:

Lemma 4.8. (Weakening) If Γ1,Γ2⊢F e :τ and x,α ̸∈Γ1,Γ2, then

1. Γ1,x :τx,Γ2 ⊢F e :τ, and

2. Γ1,α :k,Γ2 ⊢F e :τ.

50

The proof is fairly similar to the proof of the Substitution Lemma above, and we omit it

here.

Acknowledgements for Chapter 4

This chapter is adapted from unpublished material that was originally prepared (as an

appendix) for “Mechanizing Refinement Types” in the proceedings of the 51st ACM SIGPLAN

Symposium on Principles of Programming Languages (POPL 2024), by Michael Borkowski,

Niki Vazou, and Ranjit Jhala. The dissertation author was the primary investigator and author of

this material.

51

Chapter 5

Soundness of λRF

Our development of the metatheory for λF (§ 4.2) followed the standard presentation of

System F’s metatheory by Pierce [38]. The main difference is that ours includes well-formedness

of types and environments, which help with mechanization [43] and are crucial in λRF when

formalizing refinements.

Figure 5.1 charts the overall landscape of our formal development as a dependency graph

of the main lemmas which establish meta-theoretic properties of the different judgments for λF

and λRF . Nodes shaded light grey represent lemmas in the metatheories for both λF and λRF .

The dark grey nodes denote lemmas that only appear in λRF . An arrow shows a dependency: the

lemma at the tail is used in the proof of the lemma at the head. Solid arrows are dependencies

in λRF only. The chart already shows that the metatheory of the refined calculus λRF is much

more complex that the one of the unrefined system λF , as also shown by the summary of our

mechanization (Table 7.1).

In the rest of this chapter we establish denotational soundness (§ 5.1) and type safety

(§ 5.2) and we flesh out the skeleton of Figure 5.1, i.e. the inversion (§ 5.3), substitution (§ 5.4),

and narrowing (§ 5.5) lemmas.

52

Weakening Lemma (5.9)

Weakening Lemma

Substitution Lemma (5.8)

Substitution Lemma

Denotational Soundness (5.1)

Inversion

Weaken: tv in sub

Weaken: tv in typ

Weaken: var in sub

Weaken: var in typ

Weaken: tv in wf

Weaken: var in wf

Substitute: tv in sub

Substitute: tv in typ

Substitute: var in sub

Substitute: var in typ

Substitute: tv in wf

Substitute: var in wf

Implication Interf. (Rq. 3.3)

Den. Sound: subtyping Denot. Sound: typing Selfified Den. (5.2)

Exact Subtypes (5.11)

Exact Types (5.11)

Narrowing Lemma (5.10)

Transitivity (5.6)

Inversion of Typing (5.7) Primitives (Req. 3.2) Polym. Prim. (Req. 3.2)

Progress (5.4) Preservation (5.5) Values Stuck Det. Semantics

Figure 5.1: Dependencies in the metatheory. We write “var” and “tv” to resp. abbreviate term
and type variables.

5.1 Denotational Soundness

Denotational soundness connects syntactic typing and subtyping with the type denotations

(of Figure 3.8). For typing, it states that if Γ ⊢ e : t, then when e is closed by any closing

substitution of Γ it evaluates to a value that belongs in the denotation of the closed t. For

subtyping, if Γ ⊢ s ⪯ t, then under all closing substitutions, the denotation of the former type is

contained in the latter:

Theorem 5.1. (Denotational Soundness)

1. If Γ ⊢ e : t and ⊢w Γ and θ ∈ JΓK then θ(e) ↪→∗ v ∈ Jθ(t)K for some value v.

2. If Γ ⊢ t1 ⪯ t2 and ⊢w Γ and Γ ⊢w t1 : k1 and Γ ⊢w t2 : k2 and θ ∈ JΓK then Jθ(t1)K⊆ Jθ(t2)K.

53

The proof is by mutual induction on the structure of the judgments Γ ⊢ e : t and Γ ⊢ t1 ⪯ t2

respectively. Our rule T-VAR mentions selfification, so we use Lemma 5.2 for that case.

Lemma 5.2. (Selfified Denotations) If ∅ ⊢w t : k, ∅ ⊢ e : t, e ↪→∗ v for some v ∈ J t K then

v ∈ Jself(t,e,k)K.

This lemma captures the intuition that if v ∈ Jb{x : p}K (i.e. if v has base type b and

p[v/x] ↪→∗ true), then we have v ∈ Jb{x : p∧ x = v}K as (p∧ x = v)[v/x] certainly evaluates to

true. The full proof also handles the case that t is an existential type as well as selfification by

an expression e that evaluates to v.

5.2 Type Safety

The type safety theorem states that a well-typed term does not get stuck: i.e. either

evaluates to a value or can step to another term (progress) of the same type (preservation).

Theorem 5.3. (Type Safety of λRF)

1. (Type Safety) If ∅ ⊢ e : t and e ↪→∗ e′, then e′ is a value or e′ ↪→ e′′ for some e′′.

2. (No Error) If ∅ ⊢ e : t and e ↪→∗ e′, then e′ ̸= error.

The No Error property explicitly states that well-typed terms cannot evaluate to the term

error (that encodes stuck terms) and is a direct implication of type safety. We prove type safety

by induction on the length of the sequence of steps e ↪→∗ e′, using preservation and progress.

Progress The progress lemma says a well-typed term is a value or steps to some other

term.

Lemma 5.4. (Progress) If ∅ ⊢ e : t, then e is a value or e ↪→ e′ for some e′.

The proof is by induction on the typing derivation using the primitives Requirement 3.2,

that we proved for our built-in primitives, and the inversion of typing lemma.

54

Preservation The preservation lemma states that typing is preserved by evaluation.

Lemma 5.5. (Preservation) If ∅ ⊢ e : t and e ↪→ e′, then ∅ ⊢ e′ : t.

The proof is by structural induction on the derivation of the typing judgment and implicitly

uses the inversion lemma. We use the determinism of the operational semantics (lemma 3.1)

and the canonical forms lemma to case split on e to determine e′. The interesting cases are for

FT-APP and FT-TAPP that require a substitution Lemma 5.8. Next, let’s see the three main

lemmas used in the preservation and progress proofs.

5.3 Inversion of Typing Judgments

The region of Figure 5.1 labelled “Inversion” accounts for the fact that, due to subtyping

chains, the typing judgment in λRF is not syntax-directed. First, we establish that subtyping is

transitive:

Lemma 5.6. (Transitivity) If Γ ⊢w t1 : k1, Γ ⊢w t3 : k3, ⊢w Γ, Γ ⊢ t1 ⪯ t2, Γ ⊢ t2 ⪯ t3, then

Γ ⊢ t1 ⪯ t3.

The proof consists of a case-split on the possible rules for Γ ⊢ t1 ⪯ t2 and Γ ⊢ t2 ⪯

t3. When the last rule used in the former is S-WIT and the latter is S-BIND, we require the

substitution Lemma 5.8. As Aydemir et al. [2], we use the narrowing Lemma 5.10 for the

transitivity for function types.

Inverting Typing Judgments We use the transitivity of subtyping to prove some non-trivial

lemmas that let us “invert” the typing judgments to recover information about the underlying

terms and types. We describe the non-trivial case which pertains to type and value abstractions:

Lemma 5.7. (Inversion of T-ABS, T-TABS)

1. If Γ ⊢ (λw.e) : x:tx → t and ⊢w Γ, then for all y ̸∈ Γ, y : tx,Γ ⊢ e[y/w] : t[y/x].

55

2. If Γ ⊢ (Λα1 :k1.e) : ∀α:k. t and ⊢w Γ, then for all α′ ̸∈ Γ, α′ :k,Γ ⊢ e[α′/α1] : t[α′/α].

If Γ ⊢ (λw.e) : x:tx → t, then we cannot directly invert the typing judgment to get a

judgment for the body e of λw.e. Perhaps the last rule used was T-SUB, and inversion only tells

us that there exists a type t1 such that Γ ⊢ (λw.e) : t1 and Γ ⊢ t1 ⪯ x:tx → t. Inverting again, we

may in fact find a chain of types ti+1 ⪯ ti ⪯ ·· · ⪯ t2 ⪯ t1 which can be arbitrarily long. But the

proof tree must be finite so eventually we find a type w:sw → s such that Γ ⊢ (λw.e) : w:sw → s

and Γ ⊢ w:sw → s ⪯ x:tx → t (by transitivity) and the last rule was T-ABS. Then inversion gives

us that for any y ̸∈ Γ we have y :sw,Γ ⊢ e : s[y/w]. To get the desired typing judgment, we must

use the narrowing Lemma 5.10 to obtain y : tx,Γ ⊢ e : s[y/w]. Finally, we use T-SUB to derive

y : tx,Γ ⊢ e : t[y/w].

5.4 Substitution Lemma

In λRF , unlike unrefined calculi such as λF , typing and subtyping are mutual dependent.

Due to this dependency, both the substitution the weakening lemmas must now be proven in a

mutually recursive form:

Lemma 5.8. (Substitution)

1. If Γ1,x : tx,Γ2 ⊢ s ⪯ t, ⊢w Γ2, and Γ2 ⊢ vx : tx, then Γ1[vx/x],Γ2 ⊢ s[vx/x]⪯ t[vx/x].

2. If Γ1,x : tx,Γ2 ⊢ e : t, ⊢w Γ2, and Γ2 ⊢ vx : tx, then Γ1[vx/x],Γ2 ⊢ e[vx/x] : t[vx/x].

3. If Γ1,α :k,Γ2 ⊢ s ⪯ t, ⊢w Γ2, and Γ2 ⊢w tα : k, then Γ1[tα/α],Γ2 ⊢ s[tα/α]⪯ t[tα/α].

4. If Γ1,α :k,Γ2 ⊢ e : t, ⊢w Γ2, and Γ2 ⊢w tα : k, then Γ1[tα/α],Γ2 ⊢ e[tα/α] : t[tα/α].

The proof goes by induction on the derivation trees. The main difficulty arises in sub-

stituting some type tα for variable α in Γ1,α :k,Γ2 ⊢ α{x1 : p} ⪯ α{x2 : q} because tα must be

strengthened by the refinements p and q respectively. Because we encoded our typing rules using

56

cofinite quantification [3] the proof does not require a renaming lemma, but the rules that lookup

environments (rules T-VAR and WF-VAR) do need a weakening Lemma:

Lemma 5.9. (Weakening) If x,α ̸∈ Γ1,Γ2, then

1. if Γ1,Γ2 ⊢ e : t then Γ1,x : tx,Γ2 ⊢ e : t and Γ1,α :k,Γ2 ⊢ e : t.

2. if Γ1,Γ2 ⊢ s ⪯ t then Γ1,x : tx,Γ2 ⊢ s ⪯ t and Γ1,α :k,Γ2 ⊢ s ⪯ t.

The proof is by mutual induction on the derivation of the typing and subtyping judgments.

5.5 Narrowing

The narrowing lemma says that whenever we have a judgment where a binding x:tx

appears in the binding environment, we can replace tx by any subtype sx. The intuition here is

that the judgment holds under the replacement because we are making the context more specific.

Lemma 5.10. (Narrowing) If Γ2 ⊢ sx <: tx, Γ2 ⊢w sx : kx, and ⊢w Γ2 then

1. if Γ1,x : tx,Γ2 ⊢w t : k, then Γ1,x:sx,Γ2 ⊢w t : k.

2. if Γ1,x : tx,Γ2 ⊢ t1 <: t2, then Γ1,x:sx,Γ2 ⊢ t1 <: t2.

3. if Γ1,x : tx,Γ2 ⊢ e : t, then Γ1,x:sx,Γ2 ⊢ e : t.

The narrowing proof requires an exact typing Lemma 5.11 which says that a subtyping

judgment Γ ⊢ s ⪯ t is preserved after selfification on both types. Similarly, whenever we can type

a value v at type t then we also type v at the type t selfified by v.

Lemma 5.11. (Exact Typing)

1. If Γ ⊢ e : t, ⊢w Γ, Γ ⊢w t : k, and Γ ⊢ s ⪯ t, then Γ ⊢ self(s,v,k)⪯ self(t,v,k).

2. If Γ ⊢ v : t, ⊢w Γ, and Γ ⊢w t : k, then Γ ⊢ v : self(t,v,k).

57

Acknowledgements for Chapter 5

This chapter is adapted from “Mechanizing Refinement Types” in the proceedings of

the 51st ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2024),

by Michael Borkowski, Niki Vazou, and Ranjit Jhala. The dissertation author was the primary

investigator and author of this material.

58

Chapter 6

LIQUIDHASKELL & Refined Data

Propositions

In Chapter 7 we will present how we proved λRF soundness in LIQUIDHASKELL. To do

so, we developed refined data propositions, a novel feature of LIQUIDHASKELL that made such a

meta-theoretic proof possible. Although LIQUIDHASKELL had been previously used to prove

theorems inductively about provably terminating user defined functions, these extensions were

needed to reason about potentially non-terminating properties, such as the typing judgment of

λRF .

6.1 LIQUIDHASKELL

LIQUIDHASKELL’s core proof system is λRF , that is, it is using the typing judgment

presented in Figure 3.6 to check whether a Haskell program satisfies its refinement type annota-

tions. The expression language checked by LIQUIDHASKELL is GHC’s intermediate language

(CORESYN [47]) which is a superset of λRF that also includes literals, datatypes, and coercions.

Thus, LIQUIDHASKELL’s typing judgment is extended to include these constructs. To guess the

59

unknown types of Figure 3.6 (i.e. in the rules T-SUB and T-LET) and make the typing judgment

algorithmic, LIQUIDHASKELL implements the refinement type inference algorithm of liquid

types [42]. To check the implications LIQUIDHASKELL uses the I-LOG rule of § 3.3.4.2 which

are automatically discharged by an SMT solver.

LIQUIDHASKELL as a Theorem Prover Equipped with the SMT solver, LIQUIDHASKELL

can be used to prove theorems over theories known to the SMT solver. For example, that addition

over integers is associative and that for every integer there exists a larger one, as encoded by the

below functions:

assoc :: x:Int → y:Int → {v:() | x + y == y + x }

assoc _ _ = ()

exLg :: x:Int → (y::Int,{v:() | y > x })

exLg x = (x+1, ())

These definitions use lambda abstraction and dependent pairs to respectively encode the universal

and existential quantifiers. To encode logical terms, such as y > x, they refine the unit type

with such terms. Building upon this idea, LIQUIDHASKELL has been extensively used to

prove theorems, using recursive Haskell definitions to encode inductive proofs and refinement

reflection [53] to allow user-defined terminating functions into the refinement logic. Yet, the

proving power of LIQUIDHASKELL was limited because only provably terminating functions

can be used in the refinement logic and the proofs were implicitly performed by the SMT solver.

Thus, the programmer could not inspect the proof terms.

60

6.2 Refined Data Propositions

Refined data propositions encode COQ-style inductive predicates in LIQUIDHASKELL

by refining Haskell’s data types, allowing the programmer to write plain Haskell functions to

provide constructive proofs for user-defined propositions. Here, for exposition, we present the

four steps we followed in the mechanization of λRF to define the “has-type” proposition and then

use it to type the primitive one.

Step 1: Reifying Propositions as Data Our first step is to represent the propositions of

interest as plain Haskell data. For example, we can define the following types (suffixed Pr for

“proposition”):

data HasTyPr = HasTyPr Env Expr Type

data IsSubTyPr = IsSubTyPr Env Type Type

Thus, HasTyPr Γ e t and IsSubTyPr Γ s t respectively represent the propositions Γ ⊢ e : t

and Γ ⊢ s ⪯ t, which say that e can be typed as t under environment Γ and that t is a subtype of

t’ under Γ.

Step 2: Reifying Evidence as Data Next, we reify evidence, i.e. derivation trees as data

by defining Haskell data types with a single constructor per derivation rule. For example, we

define the data type HasTyEv to encode the typing rules of Figure 3.6, with constructors that

match the names of each rule.

data HasTyEv where

TPrim :: Env → Prim → HasTyEv

TSub :: Env → Expr → Type → Type → HasTyEv → IsSubTyEv → HasTyEv

...

Using these data one can construct derivation trees. For instance, TPrim Empty (PInt 1)::

HasTyEv is the tree that types the primitive one under the empty environment.

Step 3: Relating Evidence to its Propositions Next, we specify the relationship between

61

the evidence and the proposition that it establishes, via a refinement-level uninterpreted function:

measure hasTyEvPr :: HasTyEv → HasTyPr

measure isSubTyEvPr :: IsSubTyEv → IsSubTyPr

The above signatures declare that hasTyEvPr (resp. isSubTyEvPr) is a refinement-level function

that maps has-type (resp. is-subtype) evidence to its corresponding proposition. We can now

use these uninterpreted functions to define type aliases that denote well-formed evidence that

establishes a proposition. For example, consider the (refined) type aliases

type HasTy Γ e t = {ev:HasTyEv | hasTyEvPr ev == HasTyPr Γ e t }

type IsSubTy Γ s t = {ev:IsSubTyEv | isSubTyEvPr ev == IsSubTyPr Γ s t }

The definition stipulates that the type HasTy Γ e t is inhabited by evidence (of type HasTyEv)

that establishes the typing proposition HasTyPr Γ e t. Similarly, IsSubTy Γ s t is inhabited

by evidence (of type IsSubTyEv) that establishes the subtyping proposition IsSubTyPr Γ s t.

Note that the first three steps have only defined separate data types for propositions and evidence,

and specified the relationship between them via uninterpreted functions in the refinement logic.

Step 4: Refining Evidence to Establish Propositions Finally, we implement the rela-

tionship between evidence and propositions refining the types of the evidence data constructors

(rules) with pre-conditions that require the rules’ premises and post-conditions that ensure the

rules’ conclusions. For example, we connect the evidence and proposition for the typing relation

by refining the data constructors for HasTyEv using their respecting typing rule from Figure 3.6.

data HasTyEv where

TPrim :: Γ:Env → c:Prim → HasTy Γ (Prim c) (ty c)

TSub :: Γ:Env → e:Expr → s:Type → t:Type

→ HasTy Γ e s → IsSubTy Γ s t → HasTy Γ e t

...

The constructors TPrim and TSub respectively encode the rules T-PRIM and T-SUB (with well-

formedness elided for simplicity). The refinements on the input types, which encode the premises

62

of the rules, are checked whenever these constructors are used. The refinement on the output

type (being evidence of a specific proposition) is axiomatized to encode the conclusion of the

rules. For example, the type for TSub says that “for all Γ,e,s, t, given evidence that Γ ⊢ e : s and

Γ ⊢ s ⪯ t”, the constructor returns “evidence that Γ ⊢ e : t”.

Programs as Constructive Proofs Thus, the constructor refinements crucially ensure

that only well-formed pieces of evidence can be constructed, and simultaneously, precisely

track the proposition established by the evidence. This lets the programmer write plain Haskell

terms as constructive proofs, and LIQUIDHASKELL ensures that those terms indeed establish the

proposition stipulated by their type. For example, the below Haskell term is proof that the literal

1 has the type Int{ν : ν = 1}

oneTy :: HasTy Empty (EPrim (PInt 1)) {v:Int | v == 1}

oneTy = TPrim Empty (PInt 1)

If instead, the programmer wrote oneTy = TPrim Empty (PInt 2), LIQUIDHASKELL would

reject this as the modified evidence does not establish the proposition described in the type.

Implementation of Data Propositions Data propositions are a novel feature required

to encode inductive propositions in the mechanization of λRF . (Parker et al. [36] developed a

LIQUIDHASKELL metatheoretic proof but before data propositions and thus had to axiomatize a

terminating evaluation relation; see § 1.2.) Refined data propositions are implemented as part of

LIQUIDHASKELL’s existing refined data types that already supported subtyping on constructor

arguments using variant and contravariant rules, as described but not formalized in [23]. The

essential extension to support data propositions is that by refining the output types of inductive

data types, LIQUIDHASKELL can support constructive derivation-tree-style proofs. To use this

feature in practice, we had to extend the refinement logic of LIQUIDHASKELL to use existing

SMT support to make data constructors injective, i.e. if C is a constructor then ∀x,y.C(x) =

C(y) ⇒ x = y. Thus, refined data types and injectivity are the two required components to

implement data propositions.

63

Acknowledgements for Chapter 6

This chapter is adapted from “Mechanizing Refinement Types” in the proceedings of

the 51st ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2024),

by Michael Borkowski, Niki Vazou, and Ranjit Jhala. The dissertation author was the primary

investigator and author of this material.

64

Chapter 7

Implementation and Mechanization

7.1 LIQUIDHASKELL Mechanization

We mechanized type safety (Theorem 5.3) of λRF in both COQ 8.15.1 and LIQUID-

HASKELL 8.10.7.1 (available online as supplementary material). In LIQUIDHASKELL we use

refined data propositions (§ 6.2) to specify the static (e.g. typing, subtyping, well-formedness) and

dynamic (i.e. small-step transitions and their closure) semantics of λRF . The LIQUIDHASKELL

mechanization is simplified by SMT-automation (§ 8.1.1), uses a co-finite encoding for reasoning

about variables (§ 8.1.2), and consists of proofs implemented as recursive functions that construct

evidence to establish propositions by induction (§ 8.1.3).

Other that the development of data propositions, we extended LIQUIDHASKELL with two

more features during the development of this proof. First, we implemented an interpreter that

critically dropped the verification time from 10 hours to only 29 minutes (§7.1.1). Second, we

implemented a (COQ-style) strictly-positive-occurrence checker to ensure data propositions are

well-defined, since early versions of our proof used negative occurrences.

Note that while Haskell types are inhabited by diverging ⊥ values, LIQUIDHASKELL’s

totality, termination, and type checks ensure that all cases are handled, the induction (recursion)

65

is well-founded, and that the proofs (programs) indeed inhabit the propositions (types).

7.1.1 Quantitative Results

We provide a mechanically checked proof of the type safety in § 5.2, that only assumes

the requirements 3.2 and 3.3. Concretely, we assumed the primitives Requirement 3.2 for some

constants of λRF because it was too strenuous to mechanically prove without interactive aid.

In LIQUIDHASKELL type denotations (of Figure 3.8) cannot be currently encoded: since they

include ∀-quantification they could only be encoded as data propositions, but the strictly-positive-

occurrence checker rejects the definition of the function denotation. Due to this limitation, we

can neither define the denotational implementation of the implication (§ 3.3.4.3) nor prove the

denotational soundness (Theorem 5.1).

Representing Binders One main challenge in the mechanized metatheory is the syntactic

representation of variables and binders [2]. The named representation has severe difficulties

because of variable capturing substitutions and the nameless (a.k.a. de Bruijn) requires heavy

index shifting. The variable representation of λRF is locally nameless representation [40, 3],

where free variables are named, but bound variables are represented by de Bruijn indices. Our

mechanization still resembles the paper and pencil proofs (performed before mechanization), yet

it clearly addresses the following two problems with named bound variables. First, when different

refinements are strengthened (as in Figure 3.4) the variable capturing problem reappears because

we are substituting underneath a binder. Second, subtyping usually permits alpha-renaming of

binders, which breaks a required invariant that each λRF derivation tree is a valid λF tree after

erasure.

Representing Binders In our mechanization, we use the locally-nameless representation

[3, 9]. Free variables and bound variables are taken to be separate syntactic objects, so we do not

need to worry about alpha renaming of free variables to avoid capture in substitutions. We also

66

Table 7.1: Quantitative mechanization details. We split each development into sets of modules
pertaining to regions of Figure 5.1 and for each we count lines of specification (definitions,
lemma statements) and of proof.

LIQUIDHASKELL Mechanization COQ Mechanization

Subject Files Time (m) Spec Proof Files Spec Proof
Definitions 6 1 1805 374 7 941 190
Basic Properties 8 4 646 2117 8 1201 2360
λF Soundness 4 3 138 685 4 173 773
Weakening 4 1 379 467 4 110 568
Substitution 4 7 458 846 4 158 859
Exact Typing 2 4 70 230 2 33 182
Narrowing 1 1 88 166 1 54 262
Inversion 1 1 124 206 1 57 258
Primitives 3 4 120 277 3 89 508
λRF Soundness 1 1 14 181 1 12 233
Denotational Soundness - - - - 13 815 3010

Total 35 29 3842 5549 49 3643 9203

use de Bruijn indices only for bound variables. This enables us to avoid taking binder names into

account in the strengthen function used to define substitution (Figure 3.4).

Table 7.1 summarizes the development of our metatheory, which was checked using

LIQUIDHASKELL 8.10.7.1 and a Lenovo ThinkPad T15p laptop with an Intel Core i7-11800H

processor. Our mechanized proofs are substantial. The entire LIQUIDHASKELL development

comprises over 9,300 lines across about 35 files. Currently, the whole LIQUIDHASKELL proof can

be checked in 29 minutes, which makes interactive development difficult, especially compared

to the COQ proof (§ 7.2) that is checked in about 60 seconds. While incremental modular

checking provides a modicum of interactivity, improving the ergonomics of LIQUIDHASKELL,

i.e. verification time and actionable error messages, remains an important direction for future

work.

67

7.2 COQ Mechanization

Our COQ mechanization proves both type safety and denotation soundness, i.e. all the

statements of § 5.1 and § 5.2 and serves as a comparison for the metatheoretical development

abilities of the two theorem provers. In COQ, Req. 3.2 is proved (using COQ’s interactive

development) and type denotations (of Figure 3.8) are defined as recursive functions using

Equations [45], which make both the definition the denotational implementation of the implication

(§ 3.3.4.3) and the proof the denotational soundness (Theorem 5.1) possible. The implication

judgment is axiomatized per Requirement 3.3. To fairly compare the two developments in terms

of effort and ergonomics, we did not use external COQ libraries because no such libraries exist

yet for LIQUIDHASKELL. Vazou et al. [52] previously compared LIQUIDHASKELL and COQ as

theorem provers, but their mechanizations were an order of magnitude smaller than ours and did

not use data propositions (§ 6.2), which permit constructive LIQUIDHASKELL proofs.

The source code for our mechanizations in COQ and LIQUIDHASKELL, together with

instructions on how to replicate the results, are available on Zenodo [7]. Additionally, a virtual

appliance for Oracle VM VirtualBox is available on Zenodo [6] to assist with replication.

Acknowledgements for Chapter 7

This chapter is adapted from “Mechanizing Refinement Types” in the proceedings of

the 51st ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2024),

by Michael Borkowski, Niki Vazou, and Ranjit Jhala. The dissertation author was the primary

investigator and author of this material.

68

Chapter 8

Comparison of Proof Assistants

8.1 Proving Theorems in LIQUIDHASKELL

8.1.1 SMT Solvers, Arithmetic, and Set Theory

The most tedious part in the mechanization of metatheories is the establishment of

invariants about variables, for example uniqueness and freshness. LIQUIDHASKELL offers

a built-in, SMT automated support for the theory of sets, which simplifies establishing such

invariants.

Set of Free Variables Our proof mechanization defines the Haskell function fv that

returns the Set of free variable names that appear in its argument.

measure fv

fv :: Expr → S.Set VName

fv (EVar x) = S.singleton x

fv (ELam e) = fv e

fv (EApp e e’) = S.union (fv e) (fv e’)

... -- other cases

69

In the above (incomplete) definition, S is used to qualify the standard Data.Set Haskell library.

LIQUIDHASKELL embeds the functions of Data.Set to SMT set operators (encoded as a map to

booleans). For example, S.union is treated as the logical set union operator ∪. Further, we lift

fv into the refinement logic using the measure fv annotation. The measure definition defines

the logical function fv in the logic in a way that lets the SMT solver reason about the semantics

of fv in a decidable fashion, as an uninterpreted function refining the type of each Expr data

constructor [23]. This embedding, combined with the SMT solver’s support for the theory of sets,

lets LIQUIDHASKELL prove properties about expressions’ free variables “for free”.

Intrinsic Verification For an example of properties for free, consider the function subFV

x vx e which substitutes the variable x with vx in e. The refinement type of subFV describes

the free variables of the result.

subFV :: x:VName → vx:{Expr | isVal vx } → e:Expr

→ {e’:Expr | fv e’ ⊆ (fv vx ∪ (fv e \ x)) && (isVal e ⇒ isVal e’)}

subFV x vx (EVar y) = if x == y then vx else EVar y

subFV x vx (ELam e) = ELam (subFV x vx e)

subFV x vx (EApp e e’) = EApp (subFV x vx e) (subFV x vx e’)

... -- other cases

The refinement type specifies that the free variables after substitution is a subset of the free

variables in the two argument expressions, excluding x, i.e. fv(e[vx/x])⊆ fv(vx)∪ (fv(e)\{x}).

This specification is proved intrinsically, i.e. the definition of subFV is the proof (no user aid is

required) and, importantly, the specification is automatically established each time the function

subFV is called without any need for explicit hints. The specification of subFV above shows

another example of SMT-based proof simplification. It intrinsically proves that the value property

is preserved by substitution, using the Haskell boolean function isVal that defines when an

expression is a value.

70

Freshness LIQUIDHASKELL’s support for sets simplifies defining a fresh function,

which is often challenging1. fresh xs returns a variable that provably does not belong to its

input xs.

fresh :: xs:S.Set VName → { x:VName | x ̸∈ xs }

fresh xs = n ? above_max n xs’

where n = 1 + maxs xs’

xs’ = S.fromList xs

maxs :: [VName] → VName

maxs [] = 0

maxs (x:xs) = if maxs xs < x then x else maxs xs

above_max :: x:VName → xs:{[VName]|maxs xs < x} → {x ̸∈ elems xs}

above_max _ [] = ()

above_max x (_:xs) = above_max x xs

The fresh function returns n: the maximum element of the set increased by one. To compute the

maximum element we convert the set to a list and use the inductively defined maxs functions. To

prove fresh’s intrinsic specification we use an extrinsic, i.e. explicit, lemma above_max n xs’

that, via the (?) combinator of type a → b → a, tells LIQUIDHASKELL that n is not in the set

xs. This extrinsic lemma is itself trivially proved by induction on xs and SMT automation.

8.1.2 Co-finite Quantification

To encode the rules that need a fresh free variable name we use the co-finite quantification

of Aydemir et al. [3], as discussed in § 3.3. Figure 8.1 presents this encoding using the T-ABS

1For example, COQ cannot fold over a set, and so a more complex combination of tactics is required to generate a
fresh name.

71

-- Standard Existential Rule
TAbsEx :: γ:Env → tx:Type → e:Expr → t:Type

→ y:{VName | y ̸∈ dom γ }
→ HasTy ((y,tx):γ) (unbind y e) (unbindT y t)
→ HasTy γ (ELam e) (TFunc tx t)

-- Co-finitely Quantified Rule
TAbs :: γ:Env → tx:Type → e:Expr → t:Type → l:S.Set VName

→ (y:{VName|y ̸∈ l} → HasTy ((y,tx):γ) (unbind y e) (unbindT y t))
→ HasTy γ (ELam e) (TFunc tx t)

-- Note: All rules also include kx:Kind → WfType γ tx kx elided for
clarity.

Figure 8.1: Encoding of Co-finitely Quantified Rules.

rule as an example. The standard abstraction rule (rule T-ABS-EX in § 3.3) requires to provide a

concrete fresh name, which is encoded in the second line of TAbsEx as the y:{VName | y ̸∈

dom γ} argument. The co-finitely quantified encoding of the rule TAbs, instead, states that there

exists a specified finite set of excluded names, namely l, and requires that the sub-derivation

holds for any name y that does not belong in l. That is, the premise is turned into a function that,

given the name y, returns the sub-derivation. This encoding greatly simplifies our mechanization,

since the premises are no more tied to concrete names, eliminating the need for renaming lemmas.

We will often take l to be the domain of the environment, but the ability to choose l gives us the

flexibility when constructing derivations to exclude additional names that clash with another part

of a proof.

8.1.3 Inductive Proofs as Recursive Functions

The majority of our proofs are by induction on derivations. These proofs are recursive

Haskell functions that operate over refined data propositions. LIQUIDHASKELL ensures the

proofs are valid by checking that they are inductive (i.e. the recursion is well-founded), handle all

72

cases (i.e. the function is total), and establish the desired properties (i.e. witnesses the appropriate

proposition).

Preservation (Lemma 5.5) relates the HasTy data proposition of § 6.2 with a Step data

proposition that encodes Figure 3.3 and is proved by induction on the type derivation tree. Below

we present a snippet of the proof, where the subtyping case is by induction while the primitive

case is impossible:

preservation :: e:Expr → t:Type → e’:Expr → HasTy Empty e t

→ Step e e’ → HasTy Empty e’ t

preservation _e _t e’ (TSub Empty e t’ t e_has_t’ t’_sub_t) e_step_e’

= TSub Empty e’ t’ t (preservation e t’ e’ e_has_t’ e_step_e’) t’

_sub_t

preservation e _t e’ (TPrim _ _) step

= impossible "value" ? lemValStep e e’ step -- e ↪→ e′ ⇒¬(isVal e)

...

impossible :: {v:String | false} → a

lemValStep :: e:Expr → e’:Expr → Step e e’ → {¬(isVal e)}

In the TSub case we note that LIQUIDHASKELL knows that the argument _e is equal

to the subtyping parameter e. The termination checker ensures the inductive call happens on a

smaller derivation subtree. The TPrim case is by contradiction since primitives cannot step: we

proved values cannot step in the lemValStep lemma, which is combined via the (?) combinator

of type a → b → a with the fact that e is a value to allow the call of the false-precondition

impossible.

LIQUIDHASKELL’s totality checker ensures all cases of HasTyEv are covered and the

termination checker ensures the proof is well-founded.

Progress (Theorem 5.4) ensures that a well-typed expression is a value or there exists

an expression to which it steps. To express this claim we used Haskell’s Either to encode

73

disjunction that contain pairs (refined to be dependent) to encode existentials.

progress :: e:Expr → t:Type → HasTy Empty e t

→ Either {isVal e} (e’::Expr, Step e e’)

progress _ _ (TSub Empty e t’ t e_has_t’ _) = progress e t’ e_has_t’

progress _ _ (TPrim _ _) = Left ()

progress _ _ (TAbs {}) = Left ()

...

The proofs of the TSub and TPrim cases are easily done by, respectively, an inductive call and

establishing is-Value. The more interesting cases require us to case-split on the inductive call in

order to get access to the existential witness.

8.2 COQ vs. LIQUIDHASKELL

COQ has a tiny trusted code base (TCB) and strong foundational mechanized soundness

guarantees [46]. In contrast, LIQUIDHASKELL trusts the Haskell compiler (GHC), the SMT

solver (Z3), and its constraint generation rules which have not been formalized. This work,

λRF , serves precisely that purpose: by formalizing and mechanizing a significant subset of

LIQUIDHASKELL, leaving out literals, casts, and data types. As far as the user experience is

concerned, COQ metatheoretical developments are much faster to check, which was expected

since LIQUIDHASKELL comes with expensive inference, and can be aided by relevant libraries.

The two tools come with different kinds of automation: tactics vs. SMT, which we found to be

useful in complementary parts of the proofs, pointing the way to possible improvements for both

verification styles. Finally, LIQUIDHASKELL facilitates reasoning over mutually defined and

partial functions. We begin by looking at aspects of mechanized metatheory in COQ that are

easier or more feasible than in LIQUIDHASKELL, and then we turn to aspects that are easier in

74

LIQUIDHASKELL.

Negative Occurrences and COQ’s Equations Our original LIQUIDHASKELL mechaniza-

tion defined denotations as refined data propositions and proved denotational soundness. Though,

we realized that the definition of the function type denotation has a negative occurrence and

permitting negative occurrences can, in general, lead to unsoundness [11]. Our mechanization is

the first big-scale user of LIQUIDHASKELL’s data propositions thus it was not surprising that it

revealed this potential unsoundness. To remove this source of unsoundness in LIQUIDHASKELL,

we implemented a COQ-style positivity checker that unsurprisingly rejected the type denotation

definitions. A similar challenge appears in the proof of strong normalization of the simply-type

lambda calculus that because of negative occurrences cannot use inductive propositions [39].

There, the solution is to use a recursive function expr → type → Prop because a definition

doesn’t need to be computable. In our COQ mechanization, we followed a similar solution, but

since our definition was not structurally recursive and was needed for the proofs, we used the

full power of COQ’s Equations [45] to define the type denotations. Unfortunately, a similar

approach cannot currently carry over to LIQUIDHASKELL because all Haskell functions must be

computable and all LIQUIDHASKELL annotations must be decidable. Therefore, quantifiers are

neither allowed on the right-hand side of Haskell definitions nor in the refinements.

Tactics and Automation COQ’s tactics and automation often permit shorter proofs as

lemmas and constructors can be used with the apply tactic without writing out all arguments.

For example, in LIQUIDHASKELL safety (Theorem 5.3) is encoded using Haskell’s Either for

disjunction and dependent pairs for existentials. (Steps is defined, using data propositions, as the

closure of Step.)

safety :: e0:Expr → t:Type → e:Expr → HasTy Empty e0 t

→ Steps e0 e → Either {isVal e} (ei::Expr, Step e ei)

safety _e0 t _e e0_has_t e0_evals_e = case e0_evals_e of

Refl e0 → progress e0 t e0_has_t -- e0 = e

75

AddStep e0 e1 e0_step_e1 e e1_eval_e → -- e0 ↪→ e1 ↪→∗ e

safety e1 t e (preservation e0 t e0_has_t e1 e0_step_e1) e1_eval_e

The reflexive case is proved by progress. In the inductive case the evaluation sequence is

e0 ↪→ e1 ↪→∗ e and the proof goes by induction, using preservation to ensure that e1 is typed. In

COQ safety is proved without any of the three fully applied calls above:

Theorem safety : forall (e0 e:expr) (t:type),

Steps e0 e → HasTy Empty e0 t → isVal e \/ exists ei, Steps e ei.

Proof. intros; induction H.

- (* Refl *) apply progress with t; assumption.

- (* Add *) apply IHSteps; apply preservation with e; assumption. Qed.

Automation tactics could make this proof even shorter, but we retain the essential proof structure.

Mutual Recursion LIQUIDHASKELL makes it easy to define and work with mutually

recursive data types, such as our typing and subtyping judgments, and to prove mutually inductive

lemmas. Similarly, our expressions, types, and predicates are three mutually recursive data types.

Mutually recursive types are not a natural fit for COQ: the automatically generated induction

principles do not work, so we need to use the Scheme keyword to generate suitable principles.

Theorems involving these types cannot be broken up into separate lemmas for each type involved.

Rather, one combined statement must be given, which is difficult to use in the rewrite tactic.

Another weakness of COQ is that all information about the hypothesis is lost during the

induction tactic, so the normal structural induction tactic only works when a judgment contains

no information, i.e. the data constructor is instantiated solely with universally quantified variables.

For instance, in the proof of the weakening Lemma 5.9, to do structural induction on HasTy

(concat g g’)e t we must introduce a universally quantified variable g0 and strengthen

the theorem with the hypothesis g0 = concat g g’. While the standard library contains an

“experimental” tactic dependent induction, we also need to work with the special mutual

76

induction principles that we generate for our types, so we have to directly instantiate the principle

with a strengthened, complex hypothesisand state the lemma as:

Lemma lem_weaken_typ’ : (forall (g0 : env) (e : expr) (t : type),

HasTy g0 e t → (forall (g g’ : env) (x : vname) (t_x : type),

g0 = concatE g g’ → unique g → unique g’ →

(binds g) ∩ (binds g’) = empty → ~ (in_env x g) → ~ (in_env x g’)

→ HasTy (concatE (Cons x t_x g) g’) e t)) /\ (

forall (g0 : env) (t : type) (t’ : type),

Subtype g0 t t’ → (forall (g g’ : env) (x : vname) (t_x : type),

g0 = concatE g g’ → unique g → unique g’ →

(binds g) ∩ (binds g’) = empty → ~ (in_env x g) → ~ (in_env x g’)

→ Subtype (concatE (Cons x t_x g) g’) t t’)).

By contrast, in LIQUIDHASKELL we can state two separate mutually recursive lemma functions

for weakening: one for typing and one for subtyping. Then we may call either lemma in their

own proofs on any smaller instance of the typing (resp. subtyping) judgment. In practice,

developments in COQ sidestep some of these issues by collapsing the language of terms, types,

etc. into a single inductive data type. This approach has the advantage of reducing the number of

substitution operations, but allows highly ungrammatical combinations like App Bool False

into our syntax. We could still use this approach combined with a pre-term encoding common

in COQ developments, but we preferred to keep a closer comparison to the LIQUIDHASKELL

mechanization.

Partial Functions LIQUIDHASKELL facilitates the definition of partial Haskell functions

and proves totality with respect to the refined types, usually automatically, without having to

reason about impossible cases in mechanized proofs. For instance, our syntax does not contain an

explicit error value, so we only want the function δ(c,v) to be defined where c v can step in our

semantics. This is straightforward in LIQUIDHASKELL: we define a predicate isCompat ::

77

Prim → Value → Bool and refine the input types of δ to satisfy isCompat. In COQ a more

roundabout approach is needed: we have to define isCompat as an inductive type and include

this object as an explicit argument to our δ function:

Inductive isCompat : prim → expr → Set : =

| isCpt_And : forall b, isCompat And (Bc b)

| isCpt_Or : forall b, isCompat Or (Bc b)

...

However, this makes it harder to prove the determinism of our semantics due to the dependence

on the proof object. One solution would be to define a partial version of δ with type Prim →

Expr → option Expr and prove the two functions always agree regardless of proof object, e.g.

using subset types; but since each value comes wrapped with a term-level proof object, agreement

proofs would require a Proof Irrelevance axiom.

Acknowledgements for Chapter 8

This chapter is adapted from “Mechanizing Refinement Types” in the proceedings of

the 51st ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2024),

by Michael Borkowski, Niki Vazou, and Ranjit Jhala. The dissertation author was the primary

investigator and author of this material.

78

Chapter 9

Lists: The Language λRFD

One of the key features of GHC’s core calculus missing from λRF is data types. The

addition of data types would also enable us to replace the ad hoc kind system of λRF with a more

versatile system of type classes. As a first step in this direction, we augment our calculus with

polymorphic refined list types. We also add a measure length that describes the length of our

lists.

9.1 Syntax and Semantics

We present the syntax and semantics of λRFD in terms of the additions to λRF . The reader

may refer to the figures in Chapter 3 for the syntactic forms and rules that are inherited from λRF .

As before, we use the gray to highlight the extensions to λF needed to support refinements in

λRFD.

Constants, Values, and Terms Figure 9.1 summarizes the syntax of terms in both λRFD

and in the unrefined calculus. The primitives c now include a succ function on integers that adds

one and a (polymorphic) len measure that computes the length of any list. Although a user could

easily define len using switch below, we add len as a built-in primitive in order to use it in

our typing judgments. Our terms e now additionally contain two list constructors: the empty list

79

Primitives c ::= · · ·
| succ integer ops.
| len polymorphic list ops

List Values ℓ ::= nil [t] empty list
| cons [t] v ℓ list constructor

Values v ::= · · ·
| ℓ list values

Terms e ::= · · ·
| cons [t] e1 e2 list constructor
| switch (e) en ec list destructor

Figure 9.1: Syntax of Primitives, Values, and Expressions.

Types t ::= · · ·
| [t]{ν : p} refined list type

Figure 9.2: Syntax of Types. The gray boxes are the extensions to λF needed by λRFD.

nil [t] and the non-empty cons [t] e1 e2, which builds a list from a head element and a tail. Both

of these constructors take a refined type annotation. For instance, we should be able to type check

cons [Int{ν : ν ≥ 0}] 1 (cons [Int{ν : ν > 0}] 2 3)

but not

cons [Int{ν : ν > 0}] 1 (cons [Int{ν : ν ≥ 0}] 2 3)

because the tail of the latter list is only known to consist of non-negative integers. Although

we mechanized the metatheory in the same manner without type annotations as well, these

annotations are needed to enable future work on a bidirectional type checking algorithm (Chapter

10). The terms also now contain a list destructor switch (e) en ec, which case splits on the shape

of the match scrutinee e. Finally, values v are augmented by lists that contain only values as

elements; these list values are defined inductively in Figure 9.1.

Kinds & Types Figure 9.2 shows the syntax of the types, with the gray boxes indicating

the extensions to λF required by λRFD. In contrast λRF , our list types are not base types, but they

80

Operational Semantics (ext. Figure 3.3) e ↪→ e′

e ↪→ e′

cons [t] e e1 ↪→ cons [t] e′ e1
E-PLCONS

e ↪→ e′

cons [t] v e ↪→ cons [t] v e′
E-PRCONS

e ↪→ e′

switch (e) en ec ↪→ switch (e′) en ec
E-PSWITCH

switch (nil [t]) en ec ↪→ en
E-SWITCHN

switch (cons [t] v1 v2) en ec ↪→ (ec v1) v2
E-SWITCHC

Figure 9.3: The small-step semantics for λRFD.

can be refined. Both of these are key to data types: our lists may contain incomparable data such

as lambda abstractions, and so they cannot support the polymorphic comparison operators within

our simple kind system. However, refinements on lists are key to any model of data types. We

must be able to express the type of a program such as the following safe tail function:

tail :: forall a. {v:[a] | length v > 0 } → [a]

tail xs = switch (xs) error (\y ys → ys)

λRFD keeps the simple kind system from λRF and enforces list types as ⋆-kinded to prevent the

substitution of a list type for a refined type variable. This prevents a refinement of a list type from

attempting to compare a list using one of the polymorphic list operators.

Dynamic Semantics Figure 9.3 summarizes the small-step semantics for both calculi.

Typing and Well-formedness Next, we present the static semantics of λRFD by describing

the additional rules used to establish our well-formedness, typing, and subtyping judgments.

Figure 9.4 summarizes the new rules that establish the well-formedness of types. Rule WFL̄IST

states that a list type [t]{x :true} with empty refinement is well-formed with star kind provided

that t is well-formed with some kind k. Similar to rule WF-REFN, our rule WF-LISTR stipulates

that a refined list type [t]{x : p} is well-formed with star kind in some environment if the trivially

refined type [t]{x :true} has star kind in the same environment and if the refinement predicate p

81

Well-formed Type (ext. Figure 3.5) Γ ⊢w t : k

Γ ⊢w t : k

Γ ⊢w [t]{x :true} : ⋆
WFL̄IST

Γ ⊢w [t]{x :true} : ⋆
∀y ̸∈ Γ.y : [t],⌊Γ⌋ ⊢F p[y/x] : Bool

Γ ⊢w [t]{x : p} : ⋆
WF-LISTR

Figure 9.4: Well-formedness of λRFD types. The rules for λF exclude the gray boxes.

has type Bool in the environment augmented by binding a fresh variable to type [t].

Figure 9.5 summarizes the rules that establish typing for both λF and λRF , with gray for

the λRF extensions. Rule T-NIL states that whenever t is a well-formed type in some environment,

then nil [t] has the type [t]{x :len x = 0} of lists of elements of type t of length zero. The rule

T-CONS is slightly more complex: whenever eh can be given type t in some environment, and

whenever et can be given type [t]{x : p} in the same environment, then the list cons [t] eh et can

be given the type [t] with the refinement that says that this list has length one more than some list

of type [t]{x : p}. The purpose of this refinement is to embed the information about the specific

length of a list at the refinement level. Our typing rule for the list destructor switch (e) en ec is

best thought of as analogous to our rule T-IF because it enables path-sensitive reasoning about

lists. This rule T-SWITCH says that whenever the match scrutinee e can be given a list type

[t]{x : p} in some environment, whenever t ′ is well-typed in the same environment, and whenever

each branch can be given this type t ′ in this environment augmented by the knowledge that the

about the scrutinee and its length, then the full term switch (e) en ec can be given type t ′. Note

that, per the semantics in 9.3, the cons-branch ec is a function expecting two arguments: the

head of the scrutinee and the tail (which we know has length one less than the scrutinee). In our

formalism, it is necessary for us to augment the environment with two dummy variables here.

We need to preserve p, the knowledge obtained from the match scrutinee, and the fact that the

scrutinee is one element longer than the tail to which ec is being applied. We could express the

82

Typing (ext. Figure 3.6) Γ ⊢ e : t

Γ ⊢w t : k

Γ ⊢ nil [t] : [t] {x :len x = 0}
T-NIL

Γ ⊢ eh : t Γ ⊢ et : [t] {x : p}

Γ ⊢ cons [t] eh et : ∃y:[t] {x : p} . [t] {ν :len ν = succ len y}
T-CONS

Γ ⊢ e : [t] {x : p} Γ ⊢w t ′ : k

∀y ̸∈ Γ. y : [t]{x : p∧len x = 0}, Γ ⊢ en : t ′

∀y,z ̸∈ Γ. z : [t]{x : p∧succ len y = len x},y : [t], Γ ⊢ ec : t → [t] {ν :len y = len ν} → t ′

Γ ⊢ switch (e) en ec : t ′
T-SWITCH

Figure 9.5: Typing rules. The judgment Γ ⊢F e : τ is extended by excluding the gray boxes.

antecedent judgment as

∀z ̸∈ Γ.z : [t]{x : p},Γ ⊢ ec : t → [t] {ν :succ len ν = len z} → t ′, (9.1)

but this would pose a problem for proving type soundness for λRFD (specifically preservation)

from a minimal interface of axioms (9.1) for implication. These axioms are purely syntactic,

and so are not sufficient to prove implications (and hence subtyping obligations) where there are

slight variations in refinement syntax. Rule T-CONS gives us a refinement that says the length

of this list is one longer than some other list; judgment 9.1 would require us to show that the

second argument to ec has length one shorter than some other list. There is no way to derive this

knowledge without either a semantic notion of entailment, or a large, unwieldy set of axioms, or

by changing the form of rule T-SWITCH as we did.

New Primitives The function ty(c), which gives the type of every built-in primitives, is

extended for the new primitives succ and len . Below we present essential examples of the ty(c)

83

Subtyping Γ ⊢ s ⪯ t

Γ ⊢ t1 ⪯ t2 ∀y ̸∈ Γ. y : [t1]{true},Γ ⊢ p1[y/x]⇒ p2[y/x]
Γ ⊢ [t1]{x : p1} ⪯ [t2]{x : p2}

S-LIST

Figure 9.6: Subtyping Rules.

definition.
ty(succ)

.
= y:Int→ Int{v : v = (succ y)}

ty(len)
.
= ∀α: ⋆ .y:α → Int{v : v = (len y)}

For ease of reading, the len used in the refinements is the polymorphic len , but with the type

applications elided.

9.1.1 Subtyping

Figure 3.7 presents the new rule to establish the subtyping judgment Γ ⊢ s ⪯ t. Rule

S-LIST states that one list type [t1]{ν : p1} is a subtype of another list type [t2]{ν : p2} in some

environment Γ, when t1 is a subtype of t2 and p1 implies p2 in the environment Γ augmented by

binding a fresh type variable to kind k.

Implication In § 3.3.4 we discussed our approach to formalizing implication by giving

both an axiomatized interface and a denotational implementation. First, we give the additional

axioms for implication in λRFD.

Requirement 9.1 (Implication Interface). The implication relation satisfies the statements in

Requirement 3.3 and the statements below:

1. (Exact Quantification) If Γ ⊢ vx : tx and Γ ⊢w tx : B and x :self(tx,vx,B) ∈ Γ and x ̸∈ free(vx)

then Γ ⊢ p ⇒ p[vx/x].

2. (Equal Length Quantification) If Γ ⊢ v : [t]{x : p} and Γ ⊢w [t]{x : p} : ⋆ and

84

x : [t]{x :len x = len v∧ p} ∈ Γ and x ̸∈ free(v) and safeListVar(x,q) then Γ ⊢ q ⇒ q[v/x]

and Γ ⊢ q[v/x]⇒ q.

The first statement says that whenever x :self(tx,vx,B) appears bound in Γ, then x is effectively

being universally quantified over a type with just one inhabitant (up to equality). Then we assume

that a refinement p implies p with all occurrences of x replaced by vx. This is semantically valid

because any encoding of our refinements in an external logic (such as SMT) would map = in

our refinement syntax to equality. And we also prove that under the denotational definition of

implication (§ 3.3.4.3) our syntactic primitive = actually corresponds to semantic equality, and

we are thus able to show that this axiom follows from the denotational definition.

The second statement, which we call Equal Length Quantification, expresses the best

possible analogue for lists. We cannot appeal to Exact Quantification for any variable x bound to

a list type in the environment; these types cannot be selfified because lists cannot be compared,

even for equality, in our system. However, the refinements that do occur in our system (by virtue

of appearing in our various rules) do not use the switch statement to destruct lists to inspect

their contents. Rather, these refinements are entirely agnostic about the data contained in lists

and are only concerned with the length of lists. We capture this notion in the recursive function

safeListVar(x,q) which states that x only appears in q as the argument to the len function. If

this is the case, then the only information that q uses about x is the length. The Exact Length

Quantification axiom then says that if x is bound to a type that constrains the length of x to be

equal to the length of a list v, then the refinement q is equivalent (under implication) to q[v/x].

Previously, we noted in § 3.3.4.1 that we did not require the Exact Quantification axiom

in Assumption 1 of [26] to formalize implication in λRF . However, we do require it for λRFD in

our mechanization to verify Requirement 3.2 as it applies to the length of lists.

85

J [t]{x : p}K .
= {v |∅ ⊢F v : [⌊t⌋] ∧ (∀vi ∈ v.vi ∈ J t K) ∧ p[v/x] ↪→∗ true}.

Figure 9.7: Denotations of Types and Environments.

9.1.2 Denotational Semantics

We extend the definition of denotations of types given in Figure 3.8 to define the denotation

of a list type. In order to define the denotation J [t]{x : p}K as the set of closed values of the

appropriate base type [⌊t⌋] which satisfy the type’s refinement predicate, we have to take into

account that there are at least two refinements here. The entire list v must satisfy the refinement p,

and additionally the type t itself may contain refinements which must be satisfied by each of the

elements of v.

9.2 Metatheory of Lists

Our proof of type soundness of λRFD generally follows the same structure as the soundness

proof for λRF , illustrated in Figure 5.1. However, some lemmas have additional cases that are

highly non-trivial and add additional difficulty to the proof. For instance, we need to be able

to invert typing judgments such as Γ ⊢ cons [t] eh et : t ′ both to obtain typing judgments for eh

and et and also to obtain a typing judgment that contains the knowledge about the length of

cons [t] eh et , which may have been discarded through subsumption.

We give the highlights for the metatheory of λRFD.

Inversion of Typing Judgments In § 5.3 we discussed Inversion Lemma 5.7, which

allowed us to invert the typing judgment for a term- or type-abstraction. We need to extend this

lemma to include inverting typing judgments for lists. We can then recover typing information

about the head and tail of this list as well as information about the length of the list that may have

been lost through use of the subsumption T-SUB rule.

86

Lemma 9.2. (Inversion of T-NIL, T-CONS) (extends Lemma 5.7)

1. If Γ ⊢ nil [t0] : [t]{x : p} and ⊢w Γ, then Γ ⊢ t0 ⪯ t, and Γ ⊢w t0 : ⋆,

and Γ ⊢ [t0]{x :len x = 0} ⪯ [t]{x : p}.

2. If Γ ⊢ cons [t0] v1 v2 : [t]{x : p} and ⊢w Γ, then Γ ⊢ t0 ⪯ t, Γ ⊢w t0 : ⋆, Γ ⊢ v1 : t0 and for

some refinement q, Γ ⊢ v2 : [t0]{x : q} and Γ ⊢ ∃y:[t]{x : q}. [t0]{x :len x = succ len y} ⪯

[t]{x : p}.

The second statement above is important because if Γ ⊢ cons [t0] v1 v2 : [t]{x : p} then

we cannot get directly to a typing judgment for v1 or for v2. Indeed, rule T-CONS gives us an

existentially quantified list of type [t0] with a refinement relating the length of the list to its tail;

but here t may not even be the same as t0, so the derivation tree must have used one or more

applications of rule T-SUB. The proof goes by induction on the size of the derivation tree, which

must be finite.

Exact Typing Although we cannot apply the exact typing lemma to lists (only base types

can be selfified), we can derive an analogous statement in terms of equality of length. whenever

we can type a list value v at type [t]{x : p} then we also type v at the type [t]{x : p} with the

refinement strengthened by len x = len v.

Lemma 9.3. (Equal Length in Typing, compare to Lemma 5.11) If Γ ⊢ v : [t]{x : p} and ⊢w Γ

then Γ ⊢ v : [t]{x :len x = len v∧ p}.

9.3 Implementation

We implemented the metatheory of λRFD in COQ. This mechanization proves both type

safety and denotation soundness. Compared to mechanization of λRF , this proof was about 35%

longer in lines of code and takes about twice as long (two minutes) to check. This mechanization

is also included as supplementary material. Table 9.1 summarizes the development of our

87

Table 9.1: Comparative mechanization details for λRF versus λRFD.

COQ Mechanizations

Subject Files λRF lines λRFD Lines % Increase λRFD Spec λRFD Proof
Definitions 7 1155 1476 27.8% 1193 283
Basic Properties 8 3626 3980 9.8% 1236 2744
λF Soundness 4 983 1156 17.5% 178 978
Weakening 4 719 868 20.7% 110 758
Substitution 4 1079 1248 15.7% 165 1083
Exact Typing 2 246 318 29.3% 73 245
Narrowing 1 333 381 14.4% 54 327
Inversion 1 339 813 139.8% 145 668
Primitives 2 635 1192 87.7% 137 1055
λRF Soundness 1 263 657 149.8% 12 645
Denot. Soundness 13 4033 6061 50.3% 1147 4914

Total 50 13411 18150 35.3% 4450 13700

metatheory, and points to which areas of the proof increased the most in length in λRFD as

compared with λRF . Finally, in the last two columns, the table provides a breakdown for each

broad area of the soundness proof of λRFD into lines of specification (definitions and theorem

statements in Gallina) and lines of proof (proofs written in Ltac, COQ’s tactic language).

The source code for our mechanization of in COQ of the soundness proof for λRFD is

available on Zenodo [5].

Acknowledgements for Chapter 9

This chapter consists of unpublished work done in collaboration with Ranjit Jhala. This

material is being prepared for future submission for publication. The dissertation author was the

primary investigator and author of this material.

88

Chapter 10

Conclusions & Future Work

We presented and formalized, for the first time, the soundness of λRF and λRFD: the former

is a refinement calculus with semantic subtyping, existential types, and parametric polymorphism,

which are critical for practical refinement typing. The latter adds basic concrete data types and

measures: lists and a built-in length function. Our metatheory is mechanized in both COQ and (for

the core λRF) LIQUIDHASKELL, the latter using the novel feature of refined data propositions to

reify derivations as (refined) Haskell datatypes, using SMT to automate invariants about variables.

While our proof can be mechanized in other proof assistants like AGDA [34], ISABELLE [33],

BELUGA [37], DAFNY [30], or F* [31], our goal here is not to compare LIQUIDHASKELL against

every system. Instead, our primary contribution is to, for the first time, establish the soundness of

the combination of features critical for practical refinement typing and show that such a proof

can be mechanized as a plain program with refinement types. Metatheory Looking ahead, we

envision two lines of work on mechanizing metatheory of and with refinement types.

1. Mechanization of Refinements λRF covers a crucial but small fragment of the features

of modern refinement type checkers. Building on this, λRFD takes the first step towards data types.

The next step is to extend the language to include literals, casts, and arbitrary user-specified data

types, thus covering all GHC’s core calculus. Next, λRF can be extended to more sophisticated

89

features of refinement types, such as abstract and bounded refinements and refinement reflection.

Similarly, our current work axiomatizes the requirements of the semantic implication checker

(i.e. SMT solver). It would be interesting to implement a solver and verify that it satisfies that

contract, or alternatively, show how proof certificates [32] could be used in place of such axioms.

2. Mechanization with Refinements While this work shows that non-trivial meta-theoretic

proofs are possible with SMT-based refinement types, our experience is that much remains to

make such developments pleasant. For example, programming would be far more convenient with

support for automatically splitting cases or filling in holes as done in Agda [34] and envisioned

by Redmond et al. [41]. Similarly, when a proof fails, the user has little choice but to think really

hard about the internal proof state and what extra lemmas are needed to prove their goal. Finally,

the stately pace of verification — 9400 lines across 35 files take about 30 minutes — hinders

interactive development. Thus, rapid incremental checking, lightweight synthesis, and actionable

error messages would go a long way towards improving the ergonomics of verification, and hence

remain important directions for future work.

Algorithmic type checking The key motivation behind the use of liquid types in practical

systems is the ability to typecheck programs decidably. When refinements are restricted to a

decidable logic, then verification can be done by an SMT solver without reliance on brittle

heuristics. As a next step, we aim to show that our typing system can be equivalently cast in

the form of a bi-modal or “bidirectional” algorithm that combines checking typing obligations

(from explicit annotations left by the programmer or at function application sites, for instance)

with synthesizing types from program subterms where possible [14]. Combined with restrictions

on the syntax of refinements, this would make typechecking for a significant subset of λRFD

programs decidable.

90

Acknowledgements for Chapter 10

This chapter is adapted from “Mechanizing Refinement Types” in the proceedings of

the 51st ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2024),

by Michael Borkowski, Niki Vazou, and Ranjit Jhala. The dissertation author was the primary

investigator and author of this material.

91

Bibliography

[1] V. Astrauskas, A. Bílý, J. Fiala, Z. Grannan, C. Matheja, P. Müller, F. Poli, and A. J.
Summers. The prusti project: Formal verification for rust (invited). In NASA Formal
Methods (14th International Symposium), pages 88–108. Springer, 2022. URL https:
//link.springer.com/chapter/10.1007/978-3-031-06773-0_5.

[2] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C.
Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and
Steve Zdancewic. Mechanized metatheory for the masses: The poplmark challenge. In
Joe Hurd and Thomas F. Melham, editors, Theorem Proving in Higher Order Logics, 18th
International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings,
volume 3603 of Lecture Notes in Computer Science, pages 50–65. Springer, 2005. doi:
10.1007/11541868_4. URL https://doi.org/10.1007/11541868_4.

[3] Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie
Weirich. Engineering formal metatheory. In George C. Necula and Philip Wadler, editors,
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, pages 3–
15. ACM, 2008. doi: 10.1145/1328438.1328443. URL https://doi.org/10.1145/1328438.
1328443.

[4] João Filipe Belo, Michael Greenberg, Atsushi Igarashi, and Benjamin C. Pierce. Poly-
morphic contracts. In Gilles Barthe, editor, Programming Languages and Systems -
20th European Symposium on Programming, ESOP 2011, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken,
Germany, March 26-April 3, 2011. Proceedings, volume 6602 of Lecture Notes in Com-
puter Science, pages 18–37. Springer, 2011. doi: 10.1007/978-3-642-19718-5_2. URL
https://doi.org/10.1007/978-3-642-19718-5_2.

[5] Michael H. Borkowski and Ranjit Jhala. Coq Mechanization for Chapter 9 of Dissertation
"Mechanizing Refinement Types", August 2024. URL https://doi.org/10.5281/zenodo.
13352164.

[6] Michael H. Borkowski, Niki Vazou, and Ranjit Jhala. Artifact Virtual Machine for "Mecha-
nizing Refinement Types", October 2023. URL https://doi.org/10.5281/zenodo.8425176.

92

https://link.springer.com/chapter/10.1007/978-3-031-06773-0_5
https://link.springer.com/chapter/10.1007/978-3-031-06773-0_5
https://doi.org/10.1007/11541868_4
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1007/978-3-642-19718-5_2
https://doi.org/10.5281/zenodo.13352164
https://doi.org/10.5281/zenodo.13352164
https://doi.org/10.5281/zenodo.8425176

[7] Michael H. Borkowski, Niki Vazou, and Ranjit Jhala. Artifact for "Mechanizing Refinement
Types", October 2023. URL https://doi.org/10.5281/zenodo.8425960.

[8] Giuseppe Castagna and Alain Frisch. A gentle introduction to semantic subtyping. In
Proceedings of the 7th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, PPDP ’05, page 198–208, New York, NY, USA, 2005. As-
sociation for Computing Machinery. ISBN 1595930906. doi: 10.1145/1069774.1069793.
URL https://doi.org/10.1145/1069774.1069793.

[9] Arthur Charguéraud. The locally nameless representation. J. Autom. Reason., 49(3):363–408,
2012. doi: 10.1007/s10817-011-9225-2. URL https://doi.org/10.1007/s10817-011-9225-2.

[10] Zilin Chen. A hoare logic style refinement types formalisation. In Proceedings of the
7th ACM SIGPLAN International Workshop on Type-Driven Development, TyDe 2022,
page 1–14, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450394390. doi: 10.1145/3546196.3550162. URL https://doi.org/10.1145/3546196.
3550162.

[11] Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-Löf and
Grigori Mints, editors, COLOG-88, pages 50–66, Berlin, Heidelberg, 1990. Springer Berlin
Heidelberg. ISBN 978-3-540-46963-6. doi: https://doi.org/10.1007/3-540-52335-9_47.

[12] Benjamin Cosman and Ranjit Jhala. Local refinement typing. Proc. ACM Program. Lang.,
1(ICFP):26:1–26:27, 2017. doi: 10.1145/3110270. URL https://doi.org/10.1145/3110270.

[13] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-
78800-3. doi: https://doi.org/10.1007/978-3-540-78800-3_24.

[14] Joshua Dunfield and Neel Krishnaswami. Bidirectional typing. 2020. https://arxiv.org/abs/
1908.05839.

[15] Cormac Flanagan. Hybrid type checking. In Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’06, page 245–256,
New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595930272. doi:
10.1145/1111037.1111059. URL https://doi.org/10.1145/1111037.1111059.

[16] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN 1993 Conference
on Programming Language Design and Implementation, PLDI ’93, page 237–247, New
York, NY, USA, 1993. Association for Computing Machinery. ISBN 0897915984. doi:
10.1145/155090.155113. URL https://doi.org/10.1145/155090.155113.

[17] Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Modular code-based cryp-
tographic verification. In Proceedings of the 18th ACM Conference on Computer and

93

https://doi.org/10.5281/zenodo.8425960
https://doi.org/10.1145/1069774.1069793
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/3546196.3550162
https://doi.org/10.1145/3546196.3550162
https://doi.org/10.1145/3110270
https://arxiv.org/abs/1908.05839
https://arxiv.org/abs/1908.05839
https://doi.org/10.1145/1111037.1111059
https://doi.org/10.1145/155090.155113

Communications Security, CCS ’11, page 341–350, New York, NY, USA, 2011. Association
for Computing Machinery. ISBN 9781450309486. doi: 10.1145/2046707.2046746. URL
https://doi.org/10.1145/2046707.2046746.

[18] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping. In 17th
IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen,
Denmark, Proceedings, pages 137–146. IEEE Computer Society, 2002. doi: 10.1109/LICS.
2002.1029823. URL https://doi.org/10.1109/LICS.2002.1029823.

[19] Jad Elkhaleq Ghalayini and Neel Krishnaswami. Explicit refinement types. Proc. ACM
Program. Lang., 7(ICFP), aug 2023. doi: 10.1145/3607837. URL https://doi.org/10.1145/
3607837.

[20] Andrew D. Gordon and C. Fournet. Principles and applications of refinement types. In
Logics and Languages for Reliability and Security. IOS Press, 2010. URL https://doi.org/
10.3233/978-1-60750-100-8-73.

[21] Michael Greenberg. Manifest Contracts. PhD thesis, University of Pennsylvania, 2013.
URL https://repository.upenn.edu/edissertations/468/.

[22] Jad Hamza, Nicolas Voirol, and Viktor Kuncak. System FR: formalized foundations for
the stainless verifier. Proc. ACM Program. Lang., 3(OOPSLA):166:1–166:30, 2019. doi:
10.1145/3360592. URL https://doi.org/10.1145/3360592.

[23] Ranjit Jhala and Niki Vazou. Refinement types: A tutorial. Found. Trends Program. Lang., 6
(3-4):159–317, 2021. doi: 10.1561/2500000032. URL https://doi.org/10.1561/2500000032.

[24] Andrew M. Kent, David Kempe, and Sam Tobin-Hochstadt. Occurrence typing modulo
theories. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’16, page 296–309, New York, NY, USA, 2016. Associa-
tion for Computing Machinery. ISBN 9781450342612. doi: 10.1145/2908080.2908091.
URL https://doi.org/10.1145/2908080.2908091.

[25] Tristan Knoth, Di Wang, Adam Reynolds, Jan Hoffmann, and Nadia Polikarpova. Liquid
resource types. Proc. ACM Program. Lang., 4(ICFP):106:1–106:29, 2020. doi: 10.1145/
3408988. URL https://doi.org/10.1145/3408988.

[26] Kenneth Knowles and Cormac Flanagan. Compositional reasoning and decidable checking
for dependent contract types. In Proceedings of the 3rd Workshop on Programming Lan-
guages Meets Program Verification, PLPV ’09, page 27–38, New York, NY, USA, 2009. As-
sociation for Computing Machinery. ISBN 9781605583303. doi: 10.1145/1481848.1481853.
URL https://doi.org/10.1145/1481848.1481853.

[27] Nico Lehmann and Éric Tanter. Formalizing simple refinement types in Coq. In 2nd
International Workshop on Coq for Programming Languages (CoqPL’16), St. Petersburg,
FL, USA, January 2016.

94

https://doi.org/10.1145/2046707.2046746
https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1145/3607837
https://doi.org/10.1145/3607837
https://doi.org/10.3233/978-1-60750-100-8-73
https://doi.org/10.3233/978-1-60750-100-8-73
https://repository.upenn.edu/edissertations/468/
https://doi.org/10.1145/3360592
https://doi.org/10.1561/2500000032
https://doi.org/10.1145/2908080.2908091
https://doi.org/10.1145/3408988
https://doi.org/10.1145/1481848.1481853

[28] Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou, Nadia Polikarpova,
Deian Stefan, and Ranjit Jhala. STORM: Refinement types for secure web applications.
In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI
21), pages 441–459. USENIX Association, July 2021. ISBN 978-1-939133-22-9. URL
https://www.usenix.org/conference/osdi21/presentation/lehmann.

[29] Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. Flux: Liquid types for
rust. Proc. ACM Program. Lang., 7(PLDI), jun 2023. doi: 10.1145/3591283. URL
https://doi.org/10.1145/3591283.

[30] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional Correctness.
In Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), 2010. URL
https://doi.org/10.1007/978-3-642-17511-4_20.

[31] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel,
Catalin Hritcu, Monal Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel,
Jonathan Protzenko, Tahina Ramananandro, Aseem Rastogi, and Nikhil Swamy. Meta-F*:
Proof Automation with SMT, Tactics, and Metaprograms. In European Symposium on
Programming (ESOP), 2019. URL https://doi.org/10.1007/978-3-030-17184-1_2.

[32] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’97, page 106–119,
New York, NY, USA, 1997. Association for Computing Machinery. ISBN 0897918533. doi:
10.1145/263699.263712. URL https://doi.org/10.1145/263699.263712.

[33] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. Lecture Notes in Computer Science. 2002. URL https:
//link.springer.com/book/10.1007/3-540-45949-9.

[34] Ulf Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers, 2007.

[35] Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic typing with
dependent types. In Jean-Jacques Levy, Ernst W. Mayr, and John C. Mitchell, editors,
Exploring New Frontiers of Theoretical Informatics, pages 437–450, Boston, MA, 2004.
Springer US. ISBN 978-1-4020-8141-5. doi: https://doi.org/10.1007/1-4020-8141-3_34.

[36] James Parker, Niki Vazou, and Michael Hicks. Lweb: information flow security for
multi-tier web applications. Proc. ACM Program. Lang., 3(POPL):75:1–75:30, 2019. doi:
10.1145/3290388. URL https://doi.org/10.1145/3290388.

[37] Brigitte Pientka. Beluga: Programming with dependent types, contextual data, and contexts.
In Matthias Blume, Naoki Kobayashi, and Germán Vidal, editors, Functional and Logic
Programming, pages 1–12, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN
978-3-642-12251-4. doi: https://doi.org/10.1007/978-3-642-12251-4_1.

95

https://www.usenix.org/conference/osdi21/presentation/lehmann
https://doi.org/10.1145/3591283
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-030-17184-1_2
https://doi.org/10.1145/263699.263712
https://link.springer.com/book/10.1007/3-540-45949-9
https://link.springer.com/book/10.1007/3-540-45949-9
https://doi.org/10.1145/3290388

[38] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002. URL https:
//www.cis.upenn.edu/~bcpierce/tapl/.

[39] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi,
Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, Andrew Tolmach, and Brent Yorgey.
Programming Language Foundations, volume 2 of Software Foundations. Electronic
textbook, 2022. URL https://softwarefoundations.cis.upenn.edu/.

[40] Randy Pollack. Closure under alpha-conversion. In Henk Barendregt and Tobias Nipkow,
editors, Types for Proofs and Programs, International Workshop TYPES’93, Nijmegen,
The Netherlands, May 24-28, 1993, Selected Papers, volume 806 of Lecture Notes in
Computer Science, pages 313–332. Springer, 1993. doi: 10.1007/3-540-58085-9_82. URL
https://doi.org/10.1007/3-540-58085-9_82.

[41] Patrick Redmond, Gan Shen, and Lindsey Kuper. Toward hole-driven development with
liquid haskell. CoRR, abs/2110.04461, 2021. URL https://arxiv.org/abs/2110.04461.

[42] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’08, page 159–169, New York, NY, USA, 2008. Association for Computing Machinery.
ISBN 9781595938602. doi: 10.1145/1375581.1375602. URL https://doi.org/10.1145/
1375581.1375602.

[43] Didier Rémy. Type systems for programming languages. Course notes, 2021. URL
https://www.doc.ic.ac.uk/~svb/TSfPL/.

[44] Taro Sekiyama, Atsushi Igarashi, and Michael Greenberg. Polymorphic manifest contracts,
revised and resolved. ACM Trans. Program. Lang. Syst., 39(1):3:1–3:36, 2017. doi:
10.1145/2994594. URL https://doi.org/10.1145/2994594.

[45] Matthieu Sozeau and Cyprien Mangin. Equations reloaded: High-level dependently-typed
functional programming and proving in coq. Proc. ACM Program. Lang., 3(ICFP), jul 2019.
doi: 10.1145/3341690. URL https://doi.org/10.1145/3341690.

[46] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter.
Coq Coq Correct. Verification of Type Checking and Erasure for Coq, in Coq. In Principles
of Programming Languages (POPL), 2020. URL https://doi.org/10.1145/3371076.

[47] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly.
System f with type equality coercions. In Proceedings of the 2007 ACM SIGPLAN Interna-
tional Workshop on Types in Languages Design and Implementation, TLDI ’07, page 53–66,
New York, NY, USA, 2007. Association for Computing Machinery. ISBN 159593393X.
doi: 10.1145/1190315.1190324. URL https://doi.org/10.1145/1190315.1190324.

[48] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Si-
mon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,

96

https://www.cis.upenn.edu/~bcpierce/tapl/
https://www.cis.upenn.edu/~bcpierce/tapl/
https://softwarefoundations.cis.upenn.edu/
https://doi.org/10.1007/3-540-58085-9_82
https://arxiv.org/abs/2110.04461
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://www.doc.ic.ac.uk/~svb/TSfPL/
https://doi.org/10.1145/2994594
https://doi.org/10.1145/3341690
https://doi.org/10.1145/3371076
https://doi.org/10.1145/1190315.1190324

Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin. Dependent Types and Multi-
Monadic Effects in F*. In Principles of Programming Languages (POPL), 2016. URL
https://doi.org/10.1145/2837614.2837655.

[49] Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed
scheme. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’08, page 395–406, New York, NY, USA,
2008. Association for Computing Machinery. ISBN 9781595936899. doi: 10.1145/1328438.
1328486. URL https://doi.org/10.1145/1328438.1328486.

[50] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. Liquidhaskell: Experience with refinement
types in the real world. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell,
Haskell ’14, page 39–51, New York, NY, USA, 2014. Association for Computing Machinery.
ISBN 9781450330411. doi: 10.1145/2633357.2633366. URL https://doi.org/10.1145/
2633357.2633366.

[51] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones.
Refinement types for haskell. In Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’14, page 269–282, New York, NY, USA,
2014. Association for Computing Machinery. ISBN 9781450328739. doi: 10.1145/2628136.
2628161. URL https://doi.org/10.1145/2628136.2628161.

[52] Niki Vazou, Leonidas Lampropoulos, and Jeff Polakow. A tale of two provers: Verifying
monoidal string matching in LIQUIDHASKELL and COQ. In Proceedings of the 10th ACM
SIGPLAN International Symposium on Haskell, Haskell 2017, page 63–74, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450351829. doi:
10.1145/3122955.3122963. URL https://doi.org/10.1145/3122955.3122963.

[53] Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton,
Philip Wadler, and Ranjit Jhala. Refinement reflection: complete verification with SMT.
Proc. ACM Program. Lang., 2(POPL):53:1–53:31, 2018. doi: 10.1145/3158141. URL
https://doi.org/10.1145/3158141.

[54] Philip Wadler. Theorems for free! In Proceedings of the Fourth International Conference on
Functional Programming Languages and Computer Architecture, FPCA ’89, page 347–359,
New York, NY, USA, 1989. Association for Computing Machinery. ISBN 0897913280. doi:
10.1145/99370.99404. URL https://doi.org/10.1145/99370.99404.

97

https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/2633357.2633366
https://doi.org/10.1145/2633357.2633366
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3122955.3122963
https://doi.org/10.1145/3158141
https://doi.org/10.1145/99370.99404

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Outline
	Related Work

	Refinement Types
	The goal of Refinement Types
	The Essence of Refinement Types
	The Design of Refinement Types
	Semantic Subtyping
	Decidability
	Polymorphism

	The Soundness of Refinement Types

	The Languages F and RF
	Syntax
	Dynamic Semantics
	Static Semantics
	Well-formedness
	Typing
	Subtyping
	Implication

	F Soundness
	Static Semantics
	Metatheory for F
	Progress
	Preservation

	Soundness of RF
	Denotational Soundness
	Type Safety
	Inversion of Typing Judgments
	Substitution Lemma
	Narrowing

	LiquidHaskell & Refined Data Propositions
	LiquidHaskell
	Refined Data Propositions

	Implementation and Mechanization
	LiquidHaskell Mechanization
	Quantitative Results

	Coq Mechanization

	Comparison of Proof Assistants
	Proving Theorems in LiquidHaskell
	SMT Solvers, Arithmetic, and Set Theory
	Co-finite Quantification
	Inductive Proofs as Recursive Functions

	Coq vs. LiquidHaskell

	Lists: The Language RFD
	Syntax and Semantics
	Subtyping
	Denotational Semantics

	Metatheory of Lists
	Implementation

	Conclusions & Future Work

