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Practical checkers based on refinement types use the combination of implicit semantic subtyping and parametric
polymorphism to simplify the specification and automate the verificationof sophisticated properties of programs.
However, a formalmetatheoretic accounting of the soundness of refinement type systems using this combination
has proved elusive.Wepresent𝜆𝑅𝐹 , a core refinement calculus that combines semantic subtyping and parametric
polymorphism.We develop a metatheory for this calculus and prove soundness of the type system. Finally, we
give two mechanizations of our metatheory. First, we introduce data propositions, a novel feature that enables
encoding derivation trees for inductively defined judgments as refined data types, and use them to show that
LiqidHaskell’s refinement types can be used for mechanization. Second, we mechanize our results in Coq,
which comes with stronger soundness guarantees than LiqidHaskell, thereby laying the foundations for
mechanizing the metatheory of LiqidHaskell.
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1 INTRODUCTION

Refinements constrain types with logical predicates to specify new concepts. For example, the refine-
ment type Pos� Int{𝜈 :0<𝑣} describes positive integers and Nat� Int{𝜈 :0≤𝑣} specifies natural
numbers. Refinement types have been successfully used to specify various properties like secrecy
[Fournet et al. 2011], resource usage [Knoth et al. 2020], or informationflow [Lehmann et al. 2021] that
can then be verified in programs developed in various programming languages like Haskell [Vazou
et al. 2014b], Scala [Hamza et al. 2019], and Racket [Kent et al. 2016].

The success of refinement types relies on the combination of two essential features. First, implicit

semantic subtyping uses semantic (SMT-based) reasoning to automatically convert the types of
expressions without hassling the programmer for explicit type casts. For example, consider a positive
expression 𝑒 :Pos and a function expecting natural numbers 𝑓 :Nat→Int. To type check the appli-
cation 𝑓 𝑒 , the refinement type system will implicitly convert the type of 𝑒 from Pos to Nat, because
0 < 𝑣 ⇒ 0 ≤ 𝑣 holds semantically. Importantly, refinement types propagate semantic subtyping
inside type constructors to, for example, treat function arguments in a contravariant manner. Second,
parametric polymorphism allows the propagation of the refined types through polymorphic function
interfaces, without the need for extra reasoning. As a trivial example, once we have established that
𝑒 is positive, parametric polymorphism should let us conclude that 𝑔 𝑒 :Pos if, for example, 𝑔 is the
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identity function 𝑔 :𝑎→𝑎. As a more interesting example, in § 2 we combine semantic subtyping
and polymorphism to verify a safe-indexing array of prime numbers.

The engineering of practical refinement type checkers has galloped far ahead of the development
of their metatheoretical foundations. In fact, semantic subtyping is very tricky as it is mutually
defined with typing, leading to metatheoretic proofs with circular dependencies (Figure 2). Unsur-
prisingly, the addition of polymorphism poses further challenges. As Sekiyama et al. [2017] observe,
a naïve definition of type instantiation can lose potentially contradicting refinements leading to
unsoundness. Existing formalizations of refinement types drop semantic subtyping [Hamza et al.
2019; Sekiyama et al. 2017] or polymorphism [Flanagan 2006; Swamy et al. 2016], or have problematic
metatheory [Belo et al. 2011].
In this paper we formalize 𝜆𝑅𝐹 , a core calculus with a refinement type system that combines

semantic subtyping with polymorphism, via four concrete contributions.

1. Reconciliation Our first contribution is a language that combines refinements and polymorphism
in away that ensures themetatheory remains soundwithout sacrificing the expressiveness needed for
practical verification. To this end, 𝜆𝑅𝐹 introduces a kind system that distinguishes the type variables
that can be soundly refined (without the risk of losing refinements at instantiation) from the rest,
which are then left unrefined. In addition our design includes a form of existential typing [Knowles
and Flanagan 2009] which is essential to synthesize the types – in the sense of bidirectional typing
– for applications and let-binders in a compositional manner (§ 3, 4).

2. Foundation Our second contribution is to establish the foundations of 𝜆𝑅𝐹 by proving soundness,
which says that well-typed expressions cannot get stuck and belong in the denotation of their type
(§ 5). The combination of semantic subtyping, polymorphism, and existentials makes the soundness
proof challenging with circular dependencies that do not arise in standard (unrefined) calculi. The
mechanization was simplified by the use of two essential ingredients. First, we use an unrefined base
language 𝜆𝐹 , a classic System F [Pierce 2002], in ruleswhere refinements are not required, cutting two
potential circularities in the static judgments (Figure 2). Second, we define an implication interface

that abstractly specifies the properties of implication required to prove type soundess, and show how
this interface can be implemented via denotational semantics (§ 4.4).

3.Reification Our third contribution is to introducedata propositions, a novel feature that enables the
encoding of derivation trees for inductively defined judgments as refined data types, by first reifying
the propositions and evidence as plain Haskell data, and then using refinements to connect the two.
Hence, data propositions let us write plain Haskell functions over refined data to provide explicit,
constructive proofs (§ 6). Without data propositions reasoning about potentially non-terminating
computations was not possible in LiqidHaskell, thereby precluding even simple metatheoretic
developments such as the soundness of 𝜆𝐹 let alone 𝜆𝑅𝐹 .

4. Mechanization Our final contribution is to mechanize the metatheory of 𝜆𝑅𝐹 twice: using Liq-
uidHaskell and Coq.We formalized 𝜆𝑅𝐹 in LiqidHaskell (§ 7) to evaluate the feasibility of such
substantial metatheoretical formalizations. Our proof is non-trivial, requiring 9,400 lines of code,
30 minutes to verify, and various modifications in the internals of LiqidHaskell. We translated
the same proof to Coq (§ 8) to compare the two alternatives. Certain definitions, concretely the
type denotations, not admissible by LiqidHaskell’s positivity checker, were possible to define
in Coq using Equations [Sozeau and Mangin 2019]. Further, the Coq development is much faster
(about 60 seconds to verify), but more difficult to manipulate various partial and mutual recursive
definitions of the formalization. Finally, Coq comeswith stronger foundational soundness guarantees
than LiqidHaskell. While the metatheory of Coq is well studied, 𝜆𝑅𝐹 lays the foundation for the
mechanized metatheory of LiqidHaskell.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 70. Publication date: January 2024.



Mechanizing Refinement Types 70:3

type ArrayN a N = {i:Nat | i < N} → a

new :: n:Nat → a → ArrayN a n

new n x = \i → if 0 ≤ i && i < n then x else error "Out of Bounds"

set :: n:Nat → i:{Nat | i < n} → a → ArrayN a n → ArrayN a n

set n i x a = \j → if i == j then x else a j

get :: n:Nat → i:{Nat | i < n} → ArrayN a n → a

get n i a = a i

Fig. 1. Functional Arrays with refinement types that ensure safe indexing.

2 REFINEMENT TYPES

Westart by an informal overviewof the refined core calculus𝜆𝑅𝐹 , whichwe later present formally (§ 3)
and prove sound (§ 5). Concretely, we present the goals of refinement types (§ 2.1) and how they are
achieved via the three essential features of semantic subtyping, existential types, and polymorphism
(§ 2.2).We explain how the typing judgements are designed to accommodate these features (§ 2.3) and
howwe addressed the challenges these features impose in the mechanization of the soundness proof
(§ 2.4). Our examples here are presentedwith the syntax of LiqidHaskell, but can be encoded in𝜆𝑅𝐹 .

2.1 The goal of Refinement Types

Refinement types refine the types of an existing programming language with logical predicates to
define abstractions not expressible by the underlying type system, which can then be used for static
(1) error prevention and (2) functional correctness.
Error Prevention Figure 1 presents the interface of a fixed size array that is encoded in the core
calculus 𝜆𝑅𝐹 as a function. The function new n x returns an array that contains xwhen indexed with
an integer between 0 and n and otherwise throws an “out of bounds” error. To statically ensure that
this error will never occur, new returns the refined array ArrayN a n, i.e. a function whose domain
is restricted to integers less than n. The set and get operators manipulate the refined arrays on
the index i:{Nat | i < n}, i.e. refined to be in-bounds of the array. With this refined interface,
out-of-bounds indexing is statically ruled out:
array10 :: ArrayN Int 10

array10 = new 10 0

good = get 10 4 array10 -- OK

bad = get 10 42 array10 -- Refinement Type Error

Functional Correctness Refinement types are also used to ensure that the programhas the intended
behavior. To achieve this, we use uninterpreted functions to specify behaviors and rely on the type
system to propagate them. For example, below using the uninterpreted function isPrimewe specify
that some integers are primes, as denoted by the uninterpreted predicate isPrime.
measure isPrime :: Int → Bool

type Prime = {v:Int | isPrime v}

Refinement types are not ideally suited to verifying properties like primality checking,which requires
reasoning beyond SMTdecidable fragments. However, assuming that a function establishes primality,
refinements can be used to easily track and propagate the invariant:
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assume checkPrime :: x:Int → {v:Bool | v ⇔isPrime x}

nextPrime :: Nat → Prime

nextPrime x = if checkPrime x then x else nextPrime (x+1)

The path-sensitivity of refinement types (Rule T-If of Figure 7) ensures that the function nextPrime
returns only values that pass the primality check.
Note on recursion Our core calculus does not explicitly support recursion. But it can be extended
with primitive constants (as long as they satisfy the consistency condition in Requirement 1 below).
So, to encode inductive definitions, like nextPrime in our system, we use the fixpoint constant fix:
fix :: (a → a) → a

nextPrime = fix @(Nat→ Prime) (\f x→ if checkPrime x then x else f (x+1))

Importantly, our calculus is fully polymorphic, in the sense that type variables can be instantiated
with refined types. So, the type variable offix can be instantiatedwith the refined typeNat → Prime
to get the desired type of nextPrime. Here, for emphasis, we make this instantiation explicit, but
in real systems, like LiqidHaskell, the refined type application is inferred.
Primes Array Example As a bigger example, consider an example where refinements are used for
both error prevention and functional correctness. The function primes n generates an array with
the first n prime numbers:
primes :: n:Nat → ArrayN Prime n

primes n = (fix go) 1 0 (new n (nextPrime 1))

where go f i p acc = if i < n

then let p' = nextPrime (p+1) in

go f (i+1) p' (set n i p' acc)

else acc

Since primes typechecks under the safe array interface of Figure 1, no out-of-bounds errors will
occur. At the same time, all elements of the array are set by a result nextPrime and thus primes
returns an array of prime numbers.

2.2 The essence of Refinement Types

The practicality of refinement types, as illustrated in the examples above, is due to the combination
of three essential features:
(1) Semantic Subtyping: The user does not need to provide any explicit type casts, because sub-

typing is implicit and semantic. For example, to type check get 10 4 array10 (from § 2.1), the
type of 4 :: {v:Int | v == 4} is implicitly converted to {v:Int | 0 ≤ v < 10}

(2) Decidability: The semantic casts are reduced to logical implications checked by an SMT solver.
Refinement types are designed to generate decidable logical implications, to ensure predictable
verification and also permit type inference [Rondon et al. 2008] that makes verification practical,
e.g. the primes definition requires zero annotations.

(3) Polymorphism: Polymorphism on refinement types permits instantiation of type variables with
any refined type. For example, the same array interface can be used to describe primes, functions
with positive domains, and any other concept encoded as a refinement type.

2.3 The design of Refinement Types

Next, we develop a minimal calculus 𝜆𝑅𝐹 that shows how Refinement type systems enjoy the three
essential features of § 2.2. 𝜆𝑅𝐹 has four judgements that relate expressions (𝑒), types (𝑡 ), kinds (𝑘),
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predicates (𝑝), and environments (Γ): (1) typing (Γ⊢𝑒 :𝑡 ), (2) subtyping (Γ⊢𝑡1 ⪯ 𝑡2), (3) well-formedness
(Γ⊢𝑤 𝑡 :𝑘), and (4) implication checking (Γ⊢𝑝1⇒𝑝2). In § 4 we define the judgements in detail. Here,
we present the design decisions that ensure the three essential features of refinement types.

2.3.1 Semantic Subtyping. Refinement types rely on implicit semantic subtyping, that is, type conver-
sion (fromsubtypes)happenswithoutanyexplicit castsand is checkedsemanticallyvia logicalvalidity.
For example, in the application get 10 4 array10 (of Fig. 1), the type of 4was implicitly converted.
To see how, consider an environment Γ that contains the array interface. Let Γ⊆ {get :𝑛 :Int→𝑖 :
Int{𝜈 :𝜈 <𝑛}→ArrayN𝑎 𝑛→𝑎} For brevity, we ignore the requirement that 𝑖 and𝑛 are natural num-
bers and, as in Fig. 1, we use ArrayN𝑎 𝑛 as shorthand for Int{𝜈 :𝜈 <𝑛}→𝑎. The application (get 10) 4
will type check as below, using the T-Sub rule to implicitly convert the type of the argument and the
S-Base rule to check that 4 is a valid index by checking the validity of the formula ∀𝜈. 𝜈 =4⇒𝜈 <10.

...

Γ⊢get 10 :Int{𝜈 :𝜈 <10}→ ...

Γ⊢4 :Int{𝜈 :𝜈 =4}
∀𝜈.𝜈 =4⇒𝜈 <10

Γ⊢Int{𝜈 :𝜈 =4} ⪯Int{𝜈 :𝜈 <10}
S-Base

Γ⊢4 :Int{𝜈 :𝜈 <10}
T-Sub

Γ⊢get 104 :ArrayN 𝑎 10→𝑎

Importantly, most refinement type systems use syntax-directed rules to destruct subtyping obliga-
tions into basic (semantic) implications. For example, in Figure 8 the rule S-Fun states that functions
are covariant on the result and contravariant on the arguments. Thus, a refinement type system can,
without any casts, decide that 𝑎20 :ArrayN 𝑎 20 is a suitable argument for the higher order function
get 10 4 :ArrayN 𝑎 10→𝑎 and type check the expression get 10 4 𝑎20.

2.3.2 Decidability. As illustrated in the previous type derivation, refinement type checking essen-
tially generates a set of verification conditions (VCs) whose validity implies type safety. Importantly,
the refinement type checking rules are designed to generate VCs in the logical language used by the
user-provided specifications. In general, letL be a logical language that contains equality and con-
junction. If all the user-specified predicates belong toL, then the VCs will be inL as well. In practice
(e.g. in Liquid Haskell [Vazou et al. 2014a] and Flux [Lehmann et al. 2023]), L is the qualifier-free
logic of equality, uninterpreted functions, and linear arithmetic (QF-EUFLIA).
To achieve this logical-language preservation, special care is taken in type checking function

declarations and applications.
Function Declarations Function declarations are checked using the refinement type rule for let
bindings (Rule T-Let also in Figure 7).

Γ⊢𝑒𝑓 :𝑡𝑓 Γ⊢𝑤 𝑡 :𝑘 𝑓 :𝑡𝑓 ,Γ⊢𝑒 :𝑡
Γ⊢let 𝑓 =𝑒𝑓 in𝑒 :𝑡

T-Let

The type checking must infer the type 𝑡𝑓 of the function, but that could be user-annotated (e.g. 𝑒𝑓
could be 𝑒 ′

𝑓
:𝑡𝑓 ).

Importantly, the body 𝑒 is checkedwithout knowledge of the definition of 𝑓 . The exact encoding of
the body of the function definitions (for example, as done in Dafny [Leino 2010] or Prusti [Astrauskas
et al. 2022]) requires the use of∀-quantifiers in the SMT solver, thus potentially leading to undecidabil-
ity. Instead, refinement types only use the refinement type specifications of functions, providing a fast
but incomplete verification technique. For example, given only the specifications of get and set, and
not their exact definitions, it is not possible to show that get after set returns the value that was set.
getSet :: n:Int → i:{Nat|i<n} → x:a → ArrayN a n → {v:a|x == v}

getSet n i x a = get n i (set n i x a) -- Refinement Type Error

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 70. Publication date: January 2024.



70:6 Michael H. Borkowski, Niki Vazou, and Ranjit Jhala

FunctionApplication Fordecidable typechecking, refinement typesuseanexistential type[Knowles
and Flanagan 2009] to check dependent function application, i.e. the TApp-Exists rule below, instead
of the standard type-theoretic TApp-Exact rule.

Γ⊢ 𝑓 :𝑥 :𝑡𝑥 →𝑡 Γ⊢𝑒 :𝑡𝑥
Γ⊢ 𝑓 𝑒 :𝑡 [𝑒/𝑥]

TApp-Exact
Γ⊢ 𝑓 :𝑥 :𝑡𝑥 →𝑡 Γ⊢𝑒 :𝑡𝑥

Γ⊢ 𝑓 𝑒 :∃𝑥 :𝑡𝑥 .𝑡
TApp-Exists

To understand the difference, consider some expression 𝑒 of type Pos and the identity function 𝑓

𝑒 :Pos 𝑓 :𝑥 :Int→Int{𝑣 :𝑣 =𝑥}

The application 𝑓 𝑒 is typed as Int{𝑣 :𝑣 =𝑒}with the TApp-Exact rule, which has two problems. First,
the information that 𝑒 is positive is lost. To regain this information the system needs to re-analyze the
expression 𝑒 breaking compositional reasoning. Second, the arbitrary expression 𝑒 enters the refine-
ment logic potentially breaking decidability. Using the TApp-Exists rule, both of these problems are
addressed. Typing first uses subtyping on 𝑓 to track the actual type of the argument, thus weakening
the type of 𝑓 to 𝑓 :𝑥 :Pos→ Int{𝑣 :𝑣 =𝑥}. With this, the type of 𝑓 𝑒 becomes ∃𝑥 :Pos.Int{𝑣 :𝑣 =𝑥}
preserving the information that the application argument is positive, while the variable 𝑥 cannot
break any carefully crafted decidability guarantees.

Knowles and Flanagan [2009] introduce the existential application rule and show that it preserves
the decidability and completeness of the refinement type system. An alternative approach for
decidable and compositional type checking is to ensure that all the application arguments are
variables by ANF transforming the original program [Flanagan et al. 1993]. ANF is more amicable to
implementation as it does not require the definition of one more type form. However, ANF is more
problematic for themetatheory, as ANF is not preserved by evaluation. Additionally, existentials let
us synthesize types for let-binders in a bidirectional style: when typing let𝑥 =𝑒1 in𝑒2, the existential
lets us eliminate 𝑥 from the type synthesized for 𝑒2, yielding a precise, algorithmic system [Cosman
and Jhala 2017]. Thus, we choose to use existential types in 𝜆𝑅𝐹 .

2.3.3 Polymorphism. Polymorphism is a precious type abstraction [Wadler 1989], but combined
with refinements, it can lead to imprecise or, worse, unsound systems. As an example, below we
present the function maxwith four potential type signatures.

Definition max = 𝜆𝑥 𝑦.if 𝑥 <𝑦 then 𝑦 else 𝑥

Attempt 1: Monomorphism max :: 𝑥 :Int→𝑦 :Int→Int{𝜈 :𝑥 ≤𝜈∧𝑦 ≤𝜈}
Attempt 2: Unrefined Polymorphism max :: 𝑥 :𝛼→𝑦 :𝛼→𝛼

Attempt 3: Refined Polymorphism max :: 𝑥 :𝛼→𝑦 :𝛼→𝛼{𝜈 :𝑥 ≤𝜈∧𝑦 ≤𝜈}
𝜆𝑅𝐹 : Kinded Polymorphism max :: ∀𝛼 :𝐵.𝑥 :𝛼→𝑦 :𝛼→𝛼{𝜈 :𝑥 ≤𝜈∧𝑦 ≤𝜈}

As a first attempt, we give max amonomorphic type, stating that the result of max is an integer greater
than or equal to each of its arguments. This type is insufficient because it forgets any information
known for max’s arguments. For example, if both arguments are positive, the system cannot decide
that max x y is also positive. To preserve the argument information we give max a polymorphic
type, as a second attempt. Now the system can deduce that max x y is positive, but forgets that it
is also greater than or equal to both x and y. In a third attempt, we naively combine the benefits of
polymorphismwith refinements to give max a very precise type that is sufficient to propagate the
arguments’ properties (positivity) and max behavior (inequality).
Unfortunately, refinements on arbitrary type variables are dangerous for two reasons. First, the

type of max implies that the system allows comparison of any values (including functions). Second,
if refinements on type variables are allowed, then, for soundness [Belo et al. 2011], all the types that
substitute variables should be refined. For example, as detailed in §6 of [Jhala and Vazou 2021], if a
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Γ ⊢ 𝑒 : 𝑡
TYPING

Γ ⊢ 𝑡 ⪯ 𝑡

SUBTYPING

Γ ⊢𝑤 𝑡 : 𝑘
WELL-FORMEDNESS

Γ ⊢ 𝑝 ⇒ 𝑝

IMPLICATION

1

2

3

4
6

5

Fig. 2. Dependencies of Typing Judgements in Refinement Types. (Dashed lines do not exist in our formalism.)

type variable is refinedwith false (i.e.𝛼{𝜈 :false}) and gets instantiatedwith an unrefined function
type (𝑥 :𝑡𝑥 →𝑡 ), then the false refinement is lost and the system becomes unsound.
Base Kind when Refined To preserve the benefits of refinements on type variables, without the
complications of refining function types, we introduce a kind system that separates the type variables
that can be refined from the ones that cannot. To do so, we extend the standard well-formedness
rule of refinement types to also perform kind checking (Γ ⊢𝑤 𝑡 :𝑘). Variables with the base kind 𝐵
can be refined, compared, and only substituted by base, refined types. The other type variables have
kind ★ and can only be trivially refined with true. With this kind system, we have a simple and
convenient way to encode comparable values and we can give max a polymorphic and precise type
that naturally rejects non-comparable (e.g. function) arguments. This simple kind system could be
further stratified, i.e. if some base types did not support comparison, and it could be implemented
via typeclass constraints, if our system contained data types.

2.4 The soundness of Refinement Types

In this work we establish two soundness theorems for refinement types that precisely relate typ-
ing judgments Γ ⊢ 𝑒 : 𝑡 with the high-level goals of error prevention (type safety) and functional
correctness (denotational soundness).
1. Type Safety ensures that well-typed programs do not get stuck at runtime. It says that if an
expression has a type (∅⊢𝑒 :𝑡 ) and evaluates to another expression (𝑒 ↩→∗ 𝑒 ′), then either evaluation
reached a value or it can take another step (𝑒 ′ ↩→𝑒 ′′). In 𝜆𝑅𝐹 , we use the primitive error to denote
program errors (such as out-of-bounds indexing of Figure 1). The error primitive neither is a value
nor takes a step. Thus, if an expression type checks, via type safety, we know that errorwill not
be reached at runtime. Theorem 5.3 formally defines type safety and it is proved via the preservation
and progress lemmas. Type safety ensures that programs will not get stuck, but does not ensure that
they satisfy their functional specifications. This is ensured by the second soundness theorem.
2. Denotational Soundness states that if an expression has a type (∅⊢𝑒 :𝑡 ), then it belongs in the
denotations of this type (𝑒 ∈ J𝑡 K). For example, the denotation of the type {i:Nat | i ≤ 42} is
the set of integers between 0 and 42. In § 4 we inductively define the denotations of each type and
Theorem 5.1 formally encodes denotational soundness.

This work, for the first time, mechanizes the soundness of refinement types with semantic subtyp-
ing, existential types, and polymorphism. Thismechanizationwas challenging for threemain reasons:
Challenge 1: Circularities Figure 2 presents the dependencies of the four typing judgements in
refinement types. As we saw in the example of § 2.3.1 (and can be confirmed in the rules defined
in § 4), typing depends on subtyping (arrow 1) which in turn depends on implication checking
(arrow 5). Subtyping depends on typing (arrow 2; because of rule S-Wit of Figure 8), so typing and
subtyping have a circular dependency we cannot break. Typing also depends on well-formedness
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(arrow 3) that checks that types, especially the ones inferred by the system, are well-formed: all the
variables appearing in the refinements are bound in the type environment and refinements are of
boolean type. To check the type of the refinements the system could use typing thus introducing one
more dependency (arrow 4) and yet another circle. We break this dependency by using an unrefined
calculus (system 𝜆𝐹 ) that erases refinements, to check that refinements are well-typed booleans.
The final potential circle is introduced when implication depends on typing (arrow 6). In § 4.4.3 we
define implication via type denotations, but as observed by Greenberg [2013], in this case, special
care should be taken so that the system is monotonic and thus well-defined. To avoid this dangerous
circularity we again use typing of 𝜆𝐹 (and not 𝜆𝑅𝐹 ) to define denotations and thus implication.

In summary, circularities in typing judgements are problematic for two reasons:
(1) Circularities increase the complexity of proof mechanization. Concretely, because typing and

subtyping have a circular dependency, the metatheoretical lemmas (substitution, weakening,
narrowing, etc.) require versions for both typing and subtyping, which are proved by mutual
induction. If well-formedness was also included in this circularity (arrow 4), then the complexity
of the proofs would greatly increase, but would not necessarily be impossible.

(2) Second, circularities are problematic because they can lead to non well-defined systems. Con-
cretely, Greenberg [2013] describes an older refinement type system in which typing appeared
in the left hand side of subtyping and, as such, it was non-monotonic and thus not well-defined.
This situation corresponds to the red arrow 6 in fig. 2, which would make the proof impossible
due to the typing judgment occurring in a negative position in the implication judgment.

Challenge 2: Implications The second mechanization challenge was the encoding of implication.
In the bibliography of refinement types, implication has been defined in three ways:
(1) Using denotations (of types as sets of terms) defined via operational semantics [Flanagan 2006;

Vazou et al. 2018]. This encoding is more convenient when proving the soundness of the system,
since implication and thus subtyping and typing, directly connect with operational semantics,
making the proof of soundness more direct. However, the implementation of this encoding of
implication is not realistic, since it is not decidable.

(2) Using logical implication [Gordon and Fournet 2010; Rondon et al. 2008]. The encoding of the
implication as a logical implication is the closest to the implementation of a refinement system,
where an SMT is used to check logical implications. Yet, to prove soundness, a claim should be
made that logical implication checked by the SMT correctly approximates the runtime semantics
of the system (i.e. presented in rule I-Log of § 4.4.2) which has never been mechanized.

(3) By axiomatization [Lehmann and Tanter 2016]. A final approach is to leave the implication unin-
terpreted and axiomatize it with all the properties required to prove soundness. This approach is
the easiest to mechanize, but it is dangerous, since in the past the axioms assumed for implication
were inconsistent, thus soundness was “proved with flawed premises” (as quoted from Table 1
of [Sekiyama et al. 2017]).

Ourmechanization follows a combination of the first and the third approach.We specify the interface
of implication (via Requirement 2 of § 4.4.1 which is encoded as an inductive data type in the proof
mechanization) to articulate the exact properties required by the soundness proof. Then, in § 4.4.3, we
implement the implication interfaceusing thedenotational semanticsof the system.This encodinghas
twomajorbenefits. First, thedenotational implementationensures that our interface is consistent. Sec-
ond, the development of the interface leaves room for the implementation of alternative implication
“oracles”, e.g. closer to SMT solvers. Even though we did not mechanize this alternative implemen-
tation, in § 4.4.2 we present how logical implications are derived from the implication judgement.
Challenge3:ProofComplexity All the three essential featuresof refinement types addcomplexity to
the mechanization of the soundness proof. Polymorphism requires the extension of well-formedness
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Primitives 𝑐 ::= true | false | 0,1,2,... | ∧,¬ | ≤,𝑐 ≤,=,𝑐 =
Values 𝑣 ::= 𝑐 | 𝑥,𝑦,... | 𝜆𝑥.𝑒 | Λ𝛼 :𝑘.𝑒
Terms 𝑒 ::= 𝑣 | 𝑒1 𝑒2 | 𝑒 [𝑡] | let𝑥 =𝑒1 in𝑒2 | 𝑒 :𝑡 | if𝑒 then𝑒1 else𝑒2 | error

Fig. 3. Syntax of Primitives, Values, and Expressions.

Kinds 𝑘 ::= 𝐵 | ★ base and star kind

Predicates 𝑝 ::= {𝑒 | ∃Γ.Γ⊢𝐹 𝑒 :Bool} boolean-typed terms

Base Types 𝑏 ::= Bool | Int | 𝛼 bool, ints, and type variables

Types 𝑡 ::= 𝑏 {𝜈 :𝑝} refined base type

| 𝑥 :𝑡𝑥 →𝑡 function type

| ∃𝑥 :𝑡𝑥 .𝑡 existential type

| ∀𝛼 :𝑘.𝑡 polymorphic type

Environments Γ ::= ∅ | Γ,𝑥 :𝑡 | Γ,𝛼 :𝑘 variable and type bindings

Fig. 4. Syntax of Types. The grey boxes are the extensions to 𝜆𝐹 needed by 𝜆𝑅𝐹 . We use 𝜏 for 𝜆𝐹 -only types.

to kind checking. Semantic subtyping makes type checking not syntax-directed (thus inversion is
not trivial § 5.3) and dependent upon subtyping. In turn, the existential types required for decidabil-
ity make subtyping dependent upon type checking. Due to this mutual dependency, the standard
metatheoretical lemmas (substitution, weakening, narrowing, etc.) require versions for both typing
and subtyping, which are proved by mutual induction. Thus, the combination of the three essential
for refinement types featuresmakes themetatheoretical developmentmore complex and prone to un-
soundness. Once, we have carefully broken the various circularities and eliminated potential sources
of unsoundness, we get unsurprising, albeit strenuous, proofs of the soundness of refinement typing.

3 LANGUAGE

To cut the circularities in the metatheory, we formalize refinements using two calculi. The first
is the base language 𝜆𝐹 : a classic System F [Pierce 2002] with call-by-value semantics extended
with primitive Int and Bool types and operations. The second is the refined language 𝜆𝑅𝐹 which
extends 𝜆𝐹 with refinements. By using the first calculus to express the typing judgments for our
refinements, we avoid making the well-formedness (in ruleWF-Refn in § 4.1) and the implication
(in type denotations of Figure 9) judgments mutually dependent with the typing judgments. We use
the grey highlights for the extensions to 𝜆𝐹 required for 𝜆𝑅𝐹 .

3.1 Syntax

We start by describing the syntax of terms and types in the two calculi.
Constants, Values and Terms Figure 3 summarizes the syntax of terms in both calculi. The
primitives 𝑐 include Int and Bool constants, boolean operations, the polymorphic comparison and
equality, and their curried versions. Values 𝑣 are constants, binders and 𝜆- and type- abstractions.
Finally, the terms 𝑒 comprise values, value- and type- applications, let-binders, annotated expressions,
conditionals, and runtime errors. The types in annotations are, potentially wrong, specifications
written by the user and checked by the type checker.
Kinds &Types Figure 4 shows the syntax of the types, with the grey boxes indicating the extensions
to 𝜆𝐹 required by 𝜆𝑅𝐹 . In 𝜆𝑅𝐹 , only base types can be refined: we do not permit refinements for
functions and polymorphic types. 𝜆𝑅𝐹 enforces this restriction using two kinds which denote types
that may (𝐵) or may not (★) be refined. The (unrefined) base types 𝑏 comprise Int, Bool, and type
variables 𝛼 . The simplest type is of the form 𝑏{𝜈 :𝑝} comprising a base type 𝑏 and a refinement that
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Operational Semantics 𝑒 ↩→𝑒 ′

𝑐 𝑣 ↩→𝛿 (𝑐,𝑣)
E-Prim

𝑐 [𝑡] ↩→𝛿𝑇 (𝑐,⌊𝑡⌋)
E-TPrim

𝑒 ↩→𝑒 ′

𝑒 :𝑡 ↩→𝑒 ′ :𝑡
E-PAnn

𝑣 :𝑡 ↩→𝑣
E-Ann

𝑒 ↩→𝑒 ′

𝑒 𝑒1 ↩→𝑒 ′𝑒1
E-PLApp

𝑒 ↩→𝑒 ′

𝑣 𝑒 ↩→𝑣 𝑒 ′
E-PRApp

(𝜆𝑥.𝑒) 𝑣 ↩→𝑒 [𝑣/𝑥]
E-App

(Λ𝛼 :𝑘.𝑒) [𝑡] ↩→𝑒 [𝑡/𝛼]
E-TApp

𝑒 ↩→𝑒 ′

𝑒 [𝑡] ↩→𝑒 ′[𝑡]
E-PTApp

𝑒𝑥 ↩→𝑒 ′𝑥
let𝑥 =𝑒𝑥 in𝑒 ↩→let𝑥 =𝑒 ′𝑥 in𝑒

E-PLet
let𝑥 =𝑣 in𝑒 ↩→𝑒 [𝑣/𝑥]

E-Let

𝑒 ↩→𝑒 ′

if𝑒 then𝑒1 else𝑒2 ↩→if𝑒 ′then𝑒1 else𝑒2
E-PIf

iftruethen𝑒1 else𝑒2 ↩→𝑒1
E-IfT

iffalsethen𝑒1 else𝑒2 ↩→𝑒2
E-IfF

𝛽{𝑥 :𝑝}[𝑡𝛼/𝛼] � 𝛽{𝑥 :𝑝 [𝑡𝛼/𝛼]},𝛼 ≠𝛽

(𝑥 :𝑡𝑥 →𝑡) [𝑡𝛼/𝛼] � 𝑥 : (𝑡𝑥 [𝑡𝛼/𝛼])→𝑡 [𝑡𝛼/𝛼]
(∃𝑥 :𝑡𝑥 .𝑡) [𝑡𝛼/𝛼] � ∃𝑥 : (𝑡𝑥 [𝑡𝛼/𝛼]).𝑡 [𝑡𝛼/𝛼]
(∀𝛽 :𝑘.𝑡) [𝑡𝛼/𝛼] � ∀𝛽 :𝑘.𝑡 [𝑡𝛼/𝛼]
𝛼{𝑥 :𝑝}[𝑡𝛼/𝛼] � refine(𝑡𝛼 ,𝑝 [𝑡𝛼/𝛼],𝑥)

refine(𝛼{𝑧 :𝑞},𝑝,𝑥) � 𝛼{𝑧 :𝑝 [𝑧/𝑥]∧𝑞}
refine(∃𝑧 :𝑡𝑧 .𝑡,𝑝,𝑥) � ∃𝑧 :𝑡𝑧 .refine(𝑡,𝑝,𝑥)
refine(𝑥 :𝑡𝑥 →𝑡,_,_) � 𝑥 :𝑡𝑥 →𝑡

refine(∀𝛼 :𝑘.𝑡,_,_) � ∀𝛼 :𝑘.𝑡

Fig. 5. The small-step semantics and type substitution.

restricts 𝑏 to the subset of values 𝜈 that satisfy 𝑝 i.e. for which 𝑝 evaluates to true. We use refined
base types to build up dependent function types (where the input parameter 𝑥 can appear in the
output type’s refinement), existential and polymorphic types. In the sequel, we write 𝑏 to abbreviate
𝑏{𝜈 :true} and call types refined with only true “trivially refined” types.
Refinement Erasure The reduction semantics of our polymorphic primitives are defined using
an erasure function that returns the unrefined, 𝜆𝐹 version of a refined 𝜆𝑅𝐹 type:

⌊𝑏{𝜈 :𝑝}⌋ �𝑏, ⌊𝑥 :𝑡𝑥 →𝑡⌋ � ⌊𝑡𝑥 ⌋→ ⌊𝑡⌋, ⌊∃𝑥 :𝑡𝑥 .𝑡⌋ � ⌊𝑡⌋, and ⌊∀𝛼 :𝑘.𝑡⌋ �∀𝛼 :𝑘.⌊𝑡⌋

Environments Figure 4 describes the syntax of typing environments Γ which contain both term
variables bound to types and type variables bound to kinds. These variables may appear in types
bound later in the environment. In our formalism, environments grow from right to left.
Note on Variable Representation Our metatheory requires that all variables bound in the envi-
ronment are distinct. Our mechanization enforces this invariant via the locally nameless represen-
tation [Aydemir et al. 2005]: free and bound variables are distinct objects in the syntax, as are type
and term variables. All free variables have unique names which never conflict with bound variables
represented as de Bruijn indices. This eliminates the possibility of capture in substitution and the
need to perform alpha-renaming during substitution. The locally nameless representation avoids
technical manipulations such as index shifting by using names instead of indices for free variables
(we discuss alternatives in § 9). To simplify the presentation of the syntax and rules, we use names
for bound variables to make the dependent nature of the function arrow clear.

3.2 Dynamic Semantics

Figure 5 summarizes the substitution-based, call-by-value, contextual, small-step semantics for both
calculi. We specify the reduction semantics of the primitives using the functions 𝛿 and 𝛿𝑇 .
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Substitution The key difference with standard formulations is the notion of substitution for type
variables at (polymorphic) type-application sites as shown in rule E-TApp. Type substitution is
defined at the bottom left of Figure 5 and it is standard except for the last line which defines the
substitution of a type variable 𝛼 in a refined type variable 𝛼{𝑥 :𝑝}with a (potentially refined) type
𝑡𝛼 . To do this substitution, we combine 𝑝 with the type 𝑡𝛼 by using refine(𝑡𝛼 ,𝑝,𝑥) which essentially
conjoins the refinement 𝑝 to the top-level refinement of a base-kinded 𝑡𝛼 . For existential types,
refine pushes the refinement through the existential quantifier. Function and quantified types are
left unchanged as they cannot instantiate a refined type variable (which must be of base kind).
Primitives The function 𝛿 (𝑐,𝑣) evaluates the application 𝑐 𝑣 of built-in monomorphic primitives.
The reductions are defined in a curried manner, i.e. ≤𝑚𝑛 evaluates to 𝛿 (𝛿 (≤,𝑚),𝑛). Currying gives
us unary relations like𝑚≤ which is a partially evaluated version of the ≤ relation. The function
𝛿𝑇 (𝑐,⌊𝑡⌋) specifies the reduction rules for type application on the polymorphic built-in primitives.

𝛿 (∧,true) � 𝜆𝑥 .𝑥 𝛿 (≤,𝑚) � 𝑚≤ 𝛿𝑇 (=,Bool) � =

𝛿 (∧,false) � 𝜆𝑥 .false 𝛿 (𝑚≤,𝑛) � (𝑚≤𝑛) 𝛿𝑇 (=,Int) � =

𝛿 (¬,true) � false 𝛿 (=,𝑚) � 𝑚= 𝛿𝑇 (≤,Bool) � ≤
𝛿 (¬,false) � true 𝛿 (𝑚=,𝑛) � (𝑚=𝑛) 𝛿𝑇 (≤,Int) � ≤

Determinism Our soundness proof uses the determinism property of the operational semantics.

Lemma 3.1 (Determinism). For every expression 𝑒 , 1) there exists at most one term 𝑒 ′ s.t. 𝑒 ↩→𝑒 ′, 2)
there exists at most one value 𝑣 s.t. 𝑒 ↩→∗ 𝑣 , and 3) if 𝑒 is a value there is no term 𝑒 ′ s.t. 𝑒 ↩→𝑒 ′.

4 STATIC SEMANTICS

The static semantics of our calculi comprise four main judgment forms: (§ 4.1) well-formedness

judgments that determine when a type or environment is syntactically well-formed (in 𝜆𝐹 and 𝜆𝑅𝐹 );
(§ 4.2) typing judgments that stipulate that a term has a particular type in a given context (in 𝜆𝐹 and
𝜆𝑅𝐹 ); (§ 4.3) subtyping judgments that establish when one type can be viewed as a subtype of another
(in 𝜆𝑅𝐹 ); and (§ 4.4) implication judgments that establish when one predicate implies another (in
𝜆𝑅𝐹 ). Next, we present the static semantics of 𝜆𝑅𝐹 by describing the rules that establish each of these
judgments. We use grey to highlight the antecedents and rules specific to 𝜆𝑅𝐹 .

4.1 Well-formedness

Judgments The judgment Γ⊢𝑤 𝑡 :𝑘 says that the type 𝑡 is well-formed in the environment Γ and has
kind 𝑘 . The judgment ⊢𝑤 Γ says that the environment Γ is well formed, meaning that it only binds to
well-formed types. Well-formedness is also used in the (unrefined) system 𝜆𝐹 , where Γ⊢𝑤 𝜏 :𝑘 means
that the (unrefined) 𝜆𝐹 type 𝜏 is well-formed in environment Γ and has kind 𝑘 and ⊢𝑤 Γ means that
the free type variables of the environment Γ are bound earlier in the environment.
Rules Figure 6 summarizes the rules that establish the well-formedness of types and environments.
Rule WF-Base states that the two closed base types (Int and Bool, refined with true in 𝜆𝑅𝐹 ) are
well-formed and have base kind. Similarly, ruleWF-Var says that a type variable 𝛼 is well-formed
with kind 𝑘 so long as 𝛼 :𝑘 is bound in the environment. The ruleWF-Refn stipulates that a refined
base type 𝑏{𝑥 :𝑝} is well-formed with base kind in some environment if the unrefined base type
𝑏 has base kind in the same environment and if the refinement predicate 𝑝 has type Bool in the
environment augmented by binding a fresh variable to type 𝑏. Note that if 𝑏≡𝛼 then we can only
form the antecedent Γ⊢𝑤 𝛼{𝑥 :true} :𝐵when𝛼 :𝐵 ∈Γ (ruleWF-Var), which prevents us from refining
star-kinded type variables. To break a circularity in which well-formedness judgments appear in the
antecedents of typing judgments and a typing judgment appears in the antecedents of WF-Refn,
we use the 𝜆𝐹 judgment to check that 𝑝 has type Bool. Finally, ruleWF-Kind simply states that if
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Well-formed Type Γ⊢𝑤 𝑡 :𝑘

𝑏 ∈ {Bool,Int}

Γ⊢𝑤 𝑏 {𝑥 :true} :𝐵
WF-Base

𝛼 :𝑘 ∈Γ

Γ⊢𝑤 𝛼 {𝑥 :true} :𝑘
WF-Var

Γ⊢𝑤 𝑡 :𝐵
Γ⊢𝑤 𝑡 :★

WF-Kind

Γ⊢𝑤 𝑏{𝑥 :true} :𝐵
∀𝑦 ∉Γ.𝑦 :𝑏,⌊Γ⌋ ⊢𝐹 𝑝 [𝑦/𝑥] :Bool

Γ⊢𝑤 𝑏{𝑥 :𝑝} :𝐵
WF-Refn

Γ⊢𝑤 𝑡𝑥 :𝑘𝑥
∀𝑦 ∉Γ. 𝑦 :𝑡𝑥 , Γ⊢𝑤 𝑡 [𝑦/𝑥] :𝑘

Γ⊢𝑤 𝑥 :𝑡𝑥 →𝑡 :★
WF-Func

Γ⊢𝑤 𝑡𝑥 :𝑘𝑥 ∀𝑦 ∉Γ.𝑦 :𝑡𝑥 ,Γ⊢𝑤 𝑡 [𝑦/𝑥] :𝑘
Γ⊢𝑤 ∃𝑥 :𝑡𝑥 .𝑡 :𝑘

WF-Exis
∀𝛼 ′∉Γ. 𝛼 ′ :𝑘,Γ⊢𝑤 𝑡 [𝛼 ′/𝛼] :𝑘𝑡

Γ⊢𝑤 ∀𝛼 :𝑘.𝑡 :★
WF-Poly

Well-formed Environment ⊢𝑤 Γ

⊢𝑤 ∅
WFE-Emp

Γ⊢𝑤 𝑡𝑥 :𝑘𝑥 ⊢𝑤 Γ 𝑥 ∉Γ
⊢𝑤 𝑥 :𝑡𝑥 ,Γ

WFE-Bind
⊢𝑤 Γ 𝛼 ∉Γ
⊢𝑤 𝛼 :𝑘,Γ

WFE-TBind

Fig. 6. Well-formedness of types and environments. The rules for 𝜆𝐹 exclude the grey boxes.

a type 𝑡 is well-formed with base kind in some environment, then it is also well-formed with star
kind. This rule is required by our metatheory to convert base to star kinds in type variables.

As for environments, the empty environment is well-formed. Awell-formed environment remains
well-formed after binding a fresh term or type variable to resp. any well-formed type or kind.

4.2 Typing

The judgment Γ ⊢ 𝑒 : 𝑡 states that the term 𝑒 has type 𝑡 in the context of environment Γ. We write
Γ ⊢𝐹 𝑒 :𝜏 to indicate that term 𝑒 has the (unrefined) 𝜆𝐹 type 𝜏 in the (unrefined) context Γ. Figure 7
summarizes the rules that establish typing for both 𝜆𝐹 and 𝜆𝑅𝐹 , with grey for the 𝜆𝑅𝐹 extensions.
Typing Primitives The type of a built-in primitive 𝑐 is given by the function ty(𝑐), which is defined
for every constant of our system. Belowwe present essential examples of the ty(𝑐) definition.

ty(true) � Bool{𝑥 :𝑥 =true} ty(∧) � 𝑥 :Bool→𝑦 :Bool→Bool{𝑣 :𝑣 =𝑥∧𝑦}
ty(3) � Int{𝑥 :𝑥 =3} ty(≤) � ∀𝛼 :𝐵.𝑥 :𝛼→𝑦 :𝛼→Bool{𝑣 :𝑣 = (𝑥 ≤𝑦)}

ty(𝑚≤) � 𝑦 :Int→Bool{𝑣 :𝑣 = (𝑚≤𝑦)} ty(=) � ∀𝛼 :𝐵.𝑥 :𝛼→𝑦 :𝛼→Bool{𝑣 :𝑣 = (𝑥 =𝑦)}
We note that the = used in the refinements is the polymorphic equals with type applications elided.
Further, we use𝑚≤ to represent an arbitrarymember of the infinite family of primitives 0≤,1≤,2≤,....
For 𝜆𝐹 we erase the refinements using ⌊ty(𝑐)⌋. The rest of the definition is similar.
Our choice to make the typing and reduction of constants external to our language, i.e. given by

the functions ty(𝑐) and 𝛿 (𝑐), makes our system easily extensible with further constants, including
a terminating fix constant to encode induction. The requirement, for soundness, is that these two
functions together satisfy the following four conditions.

Reqirement 1. (Primitives) For every primitive 𝑐 ,

(1) If ty(𝑐)=𝑏{𝑥 :𝑝}, then∅⊢𝑤 ty(𝑐) :𝐵 and∅⊢true⇒𝑝 [𝑐/𝑥].
(2) If ty(𝑐)=𝑥 :𝑡𝑥 →𝑡 or ty(𝑐)=∀𝛼 :𝑘.𝑡 , then∅⊢𝑤 ty(𝑐) :★.
(3) If ty(𝑐)=𝑥 :𝑡𝑥 →𝑡 , then for all 𝑣𝑥 such that∅⊢𝑣𝑥 :𝑡𝑥 ,∅⊢𝛿 (𝑐,𝑣𝑥 ) :𝑡 [𝑣𝑥/𝑥].
(4) If ty(𝑐)=∀𝛼 :𝑘.𝑡 , then for all 𝑡𝛼 such that∅⊢𝑤 𝑡𝛼 :𝑘 ,∅⊢𝛿𝑇 (𝑐,𝑡𝛼 ) :𝑡 [𝑡𝛼/𝛼].
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Typing Γ⊢𝑒 :𝑡

Γ⊢𝑐 : ty(𝑐)
T-Prim

𝑥 :𝑡 ∈Γ
Γ⊢𝑤 𝑡 :𝑘

Γ⊢𝑥 : self ( 𝑡 ,𝑥,𝑘)
T-Var

Γ⊢𝑒 :𝑡
Γ⊢𝑤 𝑡 :𝑘

Γ⊢𝑒 :𝑡 :𝑡
T-Ann

Γ⊢𝑤 𝑡 :𝑘
Γ⊢𝑒 :𝑠 Γ⊢𝑠 ⪯ 𝑡

Γ⊢𝑒 :𝑡
T-Sub

Γ⊢𝑒𝑥 :𝑡𝑥
Γ⊢𝑒 : 𝑥 :𝑡𝑥 →𝑡

Γ⊢𝑒 𝑒𝑥 : ∃𝑥 :𝑡𝑥 . 𝑡
T-App

Γ⊢𝑤 𝑡𝑥 :𝑘𝑥
∀𝑦 ∉Γ.𝑦 :𝑡𝑥 ,Γ⊢𝑒 [𝑦/𝑥] : 𝑡 [𝑦/𝑥]

Γ⊢𝜆𝑥.𝑒 : 𝑥 :𝑡𝑥 →𝑡
T-Abs

∀𝛼 ′∉Γ.
𝛼 ′ :𝑘,Γ⊢𝑒 [𝛼 ′/𝛼] :𝑡 [𝛼 ′/𝛼]

Γ⊢Λ𝛼 :𝑘.𝑒 :∀𝛼 :𝑘.𝑡
T-TAbs

Γ⊢𝑤 𝑡 :𝑘
Γ⊢𝑒 :∀𝛼 :𝑘.𝑠

Γ⊢𝑒 [𝑡] :𝑠 [𝑡/𝛼]
T-TApp

Γ⊢𝑒𝑥 :𝑡𝑥 Γ⊢𝑤 𝑡 :𝑘
∀𝑦 ∉Γ.𝑦 :𝑡𝑥 ,Γ⊢𝑒 [𝑦/𝑥] :𝑡 [𝑦/𝑥]

Γ⊢let𝑥 =𝑒𝑥 in𝑒 :𝑡
T-Let

Γ⊢𝑒 : Bool {𝑥 :𝑝} Γ⊢𝑤 𝑡 :𝑘

∀𝑦 ∉Γ. 𝑦 :Bool{𝑥 :𝑝∧𝑥}, Γ⊢𝑒1 :𝑡
∀𝑦 ∉Γ. 𝑦 :Bool{𝑥 :𝑝∧¬𝑥}, Γ⊢𝑒2 :𝑡

Γ⊢if𝑒 then𝑒1 else𝑒2 :𝑡
T-If

Fig. 7. Typing rules. The judgment Γ⊢𝐹 𝑒 :𝜏 is defined by excluding the grey boxes.

Theorem 3 of [Vazou et al. 2014b] proves that a terminating fix constant satisfies requirement 1.
To type constants, rule T-Prim gives the type 𝑡𝑦 (𝑐) to any built-in primitive 𝑐 , in any context.

Typing Variables with Selfification Rule T-Var establishes that any variable 𝑥 that appears as
𝑥 :𝑡 in environment Γ can be given the selfified type [Ou et al. 2004] self (𝑡,𝑥,𝑘) provided that Γ⊢𝑤 𝑡 :𝑘 .
This rule is crucial in practice, to enable path-sensitive “occurrence” typing [Tobin-Hochstadt and
Felleisen 2008],where the types of variables are refined by control-flowguards. For example, suppose
we want to establish 𝛼 :𝐵 ⊢ (𝜆𝑥 .𝑥) : 𝑥 :𝛼→𝛼{𝑦 :𝑥 =𝑦}, and not just 𝛼 :𝐵 ⊢ (𝜆𝑥.𝑥) : 𝛼→𝛼 . The latter
would result if T-Var merely stated that Γ⊢𝑥 :𝑡 whenever 𝑥 :𝑡 ∈Γ. Instead, we strengthen the T-Var
rule to be selfified. Informally, to get information about 𝑥 into the refinement level, we need to say
that 𝑥 is constrained to elements of type 𝛼 that are equal to 𝑥 itself. In order to express the exact
type of variables, below we define the “selfification” function that strengthens a refinement with
the condition that a value is equal to itself. Since abstractions do not admit equality, we only selfify
the base types and the existential quantifications of them.

self (∃𝑧 :𝑡𝑧 .𝑡,𝑥,𝑘) � ∃𝑧 :𝑡𝑧 .self (𝑡,𝑥,𝑘) self (𝑏{𝑧 :𝑝},𝑥,𝐵) � 𝑏{𝑧 :𝑝∧𝑧=𝑥}
self (𝑥 :𝑡𝑥 →𝑡,_,_) � 𝑥 :𝑡𝑥 →𝑡 self (𝑏{𝑧 :𝑝},𝑥,★) � 𝑏{𝑧 :𝑝}
self (∀𝛼 :𝑘.𝑡,_,_) � ∀𝛼 :𝑘.𝑡

Typing Applications with Existentials Our rule T-App states the conditions for typing a term
application 𝑒 𝑒𝑥 . Under the same environment, we must be able to type 𝑒 at some function type
𝑥 :𝑡𝑥 →𝑡 and 𝑒𝑥 at 𝑡𝑥 . Then we can give 𝑒 𝑒𝑥 the existential type ∃𝑥 :𝑡𝑥 .𝑡 . The use of existential types
in rule T-App is one of the distinctive features of our language and was introduced by Knowles and
Flanagan [2009]. As overviewed in § 2.3.2, we chose this form of T-App over the conventional form of
Γ⊢𝑒 𝑒𝑥 :𝑡 [𝑒𝑥/𝑥] because our version prevents the substitution of arbitrary expressions (e.g. functions
and type abstractions) into refinements. As an alternative, we could have used ANF (A-Normal
Form [Flanagan et al. 1993]), but our metatheory would be more complex since ANF is not preserved
under the small step operational semantics.
Other Typing Rules Our rule T-TApp states that whenever a term 𝑒 has polymorphic type ∀𝛼 :𝑘.𝑠 ,
then for any well-formed type 𝑡 with kind 𝑘 , we can give the type 𝑠 [𝑡/𝛼] to the type application 𝑒 [𝑡].
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Subtyping Γ⊢𝑠 ⪯ 𝑡

Γ⊢𝑡𝑥2 ⪯ 𝑡𝑥1 ∀𝑦 ∉Γ. 𝑦 :𝑡𝑥2,Γ⊢𝑡1 [𝑦/𝑥] ⪯ 𝑡2 [𝑦/𝑥]
Γ⊢𝑥 :𝑡𝑥1→𝑡1 ⪯𝑥 :𝑡𝑥2→𝑡2

S-Fun

Γ⊢𝑣𝑥 :𝑡𝑥 Γ⊢𝑡 ⪯ 𝑡 ′[𝑣𝑥/𝑥]
Γ⊢𝑡 ⪯∃𝑥 :𝑡𝑥 .𝑡 ′

S-Wit
∀𝑦 ∉ free(𝑡)∪Γ. 𝑦 :𝑡𝑥 ,Γ⊢𝑡 [𝑦/𝑥] ⪯ 𝑡 ′

Γ⊢∃𝑥 :𝑡𝑥 .𝑡 ⪯ 𝑡 ′
S-Bind

∀𝛼 ′∉Γ. 𝛼 ′ :𝑘,Γ⊢𝑡1 [𝛼 ′/𝛼] ⪯ 𝑡2 [𝛼 ′/𝛼]
Γ⊢∀𝛼 :𝑘.𝑡1 ⪯∀𝛼 :𝑘.𝑡2

S-Poly
∀𝑦 ∉Γ. 𝑦 :𝑏,Γ⊢𝑝1 [𝑦/𝑥]⇒𝑝2 [𝑦/𝑥]

Γ⊢𝑏{𝑥 :𝑝1} ⪯𝑏{𝑥 :𝑝2}
S-Base

Fig. 8. Subtyping Rules.

For the 𝜆𝐹 variant of T-TApp, we erase the refinements (via ⌊𝑡⌋) before checkingwell-formedness and
performing the substitution. Rule T-Ann establishes that an explicit annotation 𝑒 :𝑡 indeed has type 𝑡
when theunderlying𝑒 has type 𝑡 and 𝑡 iswell-formed.The𝜆𝐹 versionof the rule erases the refinements
anduses ⌊𝑡⌋. RuleT-If states that a conditional expressionif𝑒 then𝑒1 else𝑒2 has the type 𝑡 when the
guard𝑒 canbegiventypeBool refinedby𝑝 and𝑒1 (resp.𝑒2) canbegiventype𝑡 in theenvironmentΓaug-
mentedby theknowledgewehaveabout the typeandsemantics of theguard𝑒 . Theextensionof the en-
vironmentΓwitha freshvariable that captures thesemanticsof theguardwhenchecking the twopaths
is critical topermitpath-sensitive reasoning.Finally, ruleT-Subtellsus thatwecanexchangeasubtype
𝑠 for a supertype 𝑡 in a judgment Γ⊢𝑒 :𝑡 provided 𝑡 is well-formed and Γ⊢𝑠 ⪯ 𝑡 , which we present next.

4.3 Subtyping

The subtyping judgment Γ⊢𝑠 ⪯ 𝑡 , defined in Figure 8, stipulates that the type 𝑠 is a subtype of the type
𝑡 in the environment Γ and is used in the subsumption typing rule T-Sub (of Figure 7).

Subtyping Rules Rules S-Bind and S-Wit establish subtyping for existential types [Knowles and
Flanagan 2009], resp.when the existential appears on the left or right. Rule S-Bind allows us to ex-
change a universal quantifier (a variable bound to some type 𝑡𝑥 in the environment) for an existential
quantifier. If we have a judgment of the form 𝑦 :𝑡𝑥 ,Γ ⊢ 𝑡 [𝑦/𝑥] ⪯ 𝑡 ′ where 𝑦 does not appear free in
either 𝑡 ′ or in the context Γ, then we can conclude that ∃𝑥 :𝑡𝑥 .𝑡 is a subtype of 𝑡 ′. Rule S-Wit states
that if type 𝑡 is a subtype of 𝑡 ′[𝑣𝑥/𝑥] for some value 𝑣𝑥 of type 𝑡𝑥 , then we can discard the specific
witness for 𝑥 and quantify existentially to obtain that 𝑡 is a subtype of ∃𝑥 :𝑡𝑥 .𝑡 ′.
Refinements enter the scene in the rule S-Base which specifies that a refined base type 𝑏{𝑥 :𝑝1}

is a subtype of another 𝑏{𝑥 :𝑝2} in context Γ when 𝑝1 implies 𝑝2 in the environment Γ augmented
by binding a fresh variable to the unrefined type 𝑏.

4.4 Implication

The implication judgment Γ⊢𝑝1⇒𝑝2 states that the implication 𝑝1⇒𝑝2 holds under the assumptions
captured by the context Γ. In refinement type implementations [Swamy et al. 2016; Vazou et al.
2014a], this relation is implemented as an external automated (usually SMT) solver. Since external
solvers are not easy to encode in mechanized proofs, we follow an approach that decouples the
mechanization from the implementation. Concretely, first we define the interface of the implication
(§ 4.4.1) that precisely captures all the requirements that the implication judgement should satisfy
to establish the soundness of 𝜆𝑅𝐹 . Then, we define two alternative implementations of the interface:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 70. Publication date: January 2024.



Mechanizing Refinement Types 70:15

a logical implementation (§ 4.4.2) that is used in refinement type implementations and a denotational
implementation (§ 4.4.3) that we used to complete our mechanized proof.

4.4.1 Implication’s Interface. In our mechanization, following Lehmann and Tanter [2016], we
encode implication as an axiomatized judgment that satisfies the requirements below.

Reqirement 2 (Implication Interface). The implication relation satisfies the below statements:

(1) (Reflexivity) Γ⊢𝑝⇒𝑝 .

(2) (Transitivity) If Γ⊢𝑝1⇒𝑝2 and Γ⊢𝑝2⇒𝑝3, then Γ⊢𝑝1⇒𝑝3.

(3) (Faithfulness) Γ⊢𝑝⇒true.
(4) (Introduction) If Γ⊢𝑝1⇒𝑝2 and Γ⊢𝑝1⇒𝑝3, then Γ⊢𝑝1⇒𝑝2∧𝑝3.

(5) (Conjunction) Γ⊢𝑝1∧𝑝2⇒𝑝1 and Γ⊢𝑝1∧𝑝2⇒𝑝2.

(6) (Repetition) Γ⊢𝑝1∧𝑝2⇒𝑝1∧𝑝1∧𝑝2.

(7) (Evaluation) If 𝑝1 ↩→∗𝑝2, then Γ⊢𝑝1⇒𝑝2 and Γ⊢𝑝2⇒𝑝1.

(8) (Narrowing) If Γ1,𝑥 :𝑡𝑥 ,Γ2 ⊢𝑝1⇒𝑝2 and Γ2 ⊢𝑠𝑥 ⪯ 𝑡𝑥 , then Γ1,𝑥 :𝑠𝑥 ,Γ2 ⊢𝑝1⇒𝑝2.

(9) (Weaken) If Γ1,Γ2 ⊢𝑝1⇒𝑝2, 𝑎,𝑥 ∉Γ, then Γ1,𝑥 :𝑡𝑥 ,Γ2 ⊢𝑝1⇒𝑝2 and Γ1,𝑎 :𝑘,Γ2 ⊢𝑝1⇒𝑝2.

(10) (Subst I) If Γ1,𝑥 :𝑡𝑥 ,Γ2 ⊢𝑝1⇒𝑝2 and Γ2 ⊢𝑣𝑥 :𝑡𝑥 , then Γ1 [𝑣𝑥/𝑥],Γ2 ⊢𝑝1 [𝑣𝑥/𝑥]⇒𝑝2 [𝑣𝑥/𝑥].
(11) (Subst II) If Γ1,𝑎 :𝑘,Γ2 ⊢𝑝1⇒𝑝2 and Γ2 ⊢𝑤 𝑡 :𝑘 , then Γ1 [𝑡/𝑎],Γ2 ⊢𝑝1 [𝑡/𝑎]⇒𝑝2 [𝑡/𝑎].
(12) (Strengthening) If𝑦 :𝑏{𝑥 :𝑞},Γ⊢𝑝1⇒𝑝2, then𝑦 :𝑏,Γ⊢𝑞 [𝑦/𝑥]∧𝑝1⇒𝑞 [𝑦/𝑥]∧𝑝2.

This interface precisely explicates the requirements of the implication checker to establish the
soundness of the entire refinement type system. The first six statements are standard properties of
implication. Evaluation is used to prove that built-in constants satisfy the Requirement 1 and the rest,
as captured by their name, are required to prove the narrowing (5.10), weakening (5.9), substitution
(5.8) lemmas hold in 𝜆𝑅𝐹 .

Our requirements are very similar to Assumption 1 of [Knowles and Flanagan 2009]. Our Strength-
ening and Subst II cases are required for polymorphism, thus they do not appear in Knowles and
Flanagan [2009]’s assumption. Instead they require Consistency and Exact Quantification. We do
not require Exact Quantification since our relation captures the minimum requirements to prove
soundness. Instead of explicitly requiring Consistency, in § 4.4.3 we define (and mechanize) an
implementation, i.e. inhabitant, of the interface thus show our assumptions are consistent.

4.4.2 Logical Implementation (non mechanized). The logical implementation of Γ⊢𝑝1⇒𝑝2 checks
that the logical implication 𝑝1⇒𝑝2 is valid assuming the refinements of the base types in Γ:

|=LOGIC∧{𝑝 [𝑥/𝜈] |𝑥 :𝑏{𝜈 :𝑝} ∈Γ}⇒𝑝1⇒𝑝2

Γ⊢𝑝1⇒𝑝2
I-Log

This encoding is imprecise, since some information is ignored from the environment Γ, but when
the language of refinements is decidable, implication checking is also decidable and can be efficiently
checked by an SMT solver. LiqidHaskell, for example, uses this encoding to reduce type checking
to decidable implications checked by Z3 [de Moura and Bjørner 2008], while the soundness of this
implementation (concretely statement 7 of Requirement 2) is hinted by Theorem 2 of [Vazou et al.
2014b]. Chen [2022] defines a mechanization of a refinement type system in Agda that uses a similar
encoding of implication where logical implications are checked using Agda’s logic.

4.4.3 Denotational Implementation (mechanized). The denotational implementation of Γ⊢𝑝1⇒𝑝2
checks that if 𝑝1 evaluates to true, so does 𝑝2.

∀𝜃 ∈ JΓK. 𝜃 ·𝑝1 ↩→∗ true⇒𝜃 ·𝑝2 ↩→∗ true

Γ⊢𝑝1⇒𝑝2
I-Den
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J𝑏{𝑥 :𝑝}K � {𝑣 |∅⊢𝐹 𝑣 :𝑏∧𝑝 [𝑣/𝑥] ↩→∗ true}
J𝑥 :𝑡𝑥 →𝑡K � {𝑣 |∅⊢𝐹 𝑣 : ⌊𝑡𝑥 ⌋→ ⌊𝑡⌋∧(∀𝑣𝑥 ∈ J𝑡𝑥K.𝑣 𝑣𝑥 ↩→∗ 𝑣 ′s.t.𝑣 ′∈ J𝑡 [𝑣𝑥/𝑥]K}
J∃𝑥 :𝑡𝑥 .𝑡K � {𝑣 | (∅⊢𝐹 𝑣 : ⌊𝑡⌋)∧(∃𝑣𝑥 ∈ J𝑡𝑥K.𝑣 ∈ J𝑡 [𝑣𝑥/𝑥]K}
J∀𝛼 :𝑘.𝑡K � {𝑣 | (∅⊢𝐹 𝑣 :∀𝛼 :𝑘.⌊𝑡⌋)∧(∀𝑡𝛼 .(∅⊢𝑤 𝑡𝛼 :𝑘)⇒𝑣 [𝑡𝛼 ] ↩→∗ 𝑣 ′s.t.𝑣 ′∈ J𝑡 [𝑡𝛼/𝛼]K}

JΓK � {𝜃 |∀(𝑥 :𝑡) ∈Γ.𝜃 (𝑥) ∈ J𝜃 ·𝑡K∧∀(𝛼 :𝑘) ∈Γ.∅⊢𝑤 𝜃 (𝛼) :𝑘}.

Fig. 9. Denotations of Types and Environments.

The refinements 𝑝1 and 𝑝2 are boolean expressions, so evaluation uses the operational semantics
of Figure 5. But, they are open expressions with variables bound in Γ, so before evaluation we apply
the closing substitution 𝜃 that belongs to the denotation of Γ, as defined next.

Closing Substitutions. A closing substitution is a sequence of value bindings to variables: 𝜃 = (𝑥1 ↦→
𝑣1, ...,𝑥𝑛 ↦→ 𝑣𝑛,𝛼1 ↦→ 𝑡1, ...,𝛼𝑚 ↦→ 𝑡𝑚) with all 𝑥𝑖 , 𝛼 𝑗 distinct.We write 𝜃 (𝑥) to refer to 𝑣𝑖 if 𝑥 = 𝑥𝑖 and
we use 𝜃 (𝛼) to refer to 𝑡 𝑗 if 𝛼 =𝛼 𝑗 . We define 𝜃 ·𝑡 to be the type derived from 𝑡 by substituting for all
variables in 𝜃 : 𝜃 ·𝑡 � 𝑡 [𝑣1/𝑥1]···[𝑣𝑛/𝑥𝑛] [𝑡1/𝛼1]···[𝑡𝑚/𝛼𝑚] .

Denotational Semantics. Figure 9 defines the denotations of types and environments. Follow-
ing Flanagan [2006], each closed type has a denotation J𝑡 K containing the set of closed values of
the appropriate base type which satisfy the type’s refinement predicate. (The denotation of a type
variable 𝛼 is not defined as we only require denotations for closed types.) We lift the notion of
denotations to environments JΓK as the set of closing substitutions, i.e. value and type bindings for
the variables in Γ, such that the values respect the denotations of the respective Γ-bound types and
the types are well formed with respect to the corresponding kinds.

Revisiting rule I-Den. The premise of the rule I-Den quantifies over all closing substitutions in
the denotations of the typing environment (i.e. ∀𝜃 ∈ JΓK). This quantification has two consequences.

First, the environment denotation appears in a negative position on the premise of the rule. Inspect-
ing Figure 9, the environment denotation uses the type denotation, which in turn uses type checking,
thus rendering a potential circularity between type and implication checking (arrow 6 of Figure 2).
Because of the negative occurrence, this mutual dependency would lead to a non-monotonic and
thus non-well defined system. To break this circularity, we use 𝜆𝐹 ’s type checking in the definition
of type denotations.

Second, the quantification is over all closing substitutions which are infinite. For example, a typing
environment that binds 𝑥 to an integer (i.e. 𝑥 :Int ∈ Γ) has infinitely many closing substitutions
mapping𝑥 to a different integer. Thus, the denotational implementation cannot be used to implement
a decidable type checker. On the positive side, the denotational implementation connects implication
checking to the operational semantics thus it is amicable to mechanization. Concretely, we proved
(§ 8) that the denotational implementations satisfies the statements of Requirement 2.

5 SOUNDNESS

Our development for 𝜆𝐹 (§ 5) follows the standard presentation of System F’s metatheory by Pierce
[2002]. The main difference is that ours includes well-formedness of types and environments, which
help with mechanization [Rémy 2021] and are crucial in 𝜆𝑅𝐹 when formalizing refinements.
Figure 10 charts the overall landscape of our formal development as a dependency graph of the

main lemmas which establish meta-theoretic properties of the different judgments for 𝜆𝐹 and 𝜆𝑅𝐹 .
Nodes shaded light grey represent lemmas in the metatheories for both 𝜆𝐹 and 𝜆𝑅𝐹 . The dark grey
nodes denote lemmas that only appear in 𝜆𝑅𝐹 . An arrow shows a dependency: the lemma at the tail
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Weakening Lemma (5.9)

Weakening Lemma

Substitution Lemma (5.8)

Substitution Lemma

Denotational Soundness (5.1)

Inversion

Weaken: tv in sub

Weaken: tv in typ

Weaken: var in sub

Weaken: var in typ

Weaken: tv in wf

Weaken: var in wf

Substitute: tv in sub

Substitute: tv in typ

Substitute: var in sub

Substitute: var in typ

Substitute: tv in wf

Substitute: var in wf

Implication Interf. (Rq. 2)

Den. Sound: subtyping Denot. Sound: typing Selfified Den. (5.2)

Exact Subtypes (5.11)

Exact Types (5.11)

Narrowing Lemma (5.10)
Transitivity (5.6)

Inversion of Typing (5.7) Primitives (Req. 1) Polym. Prim. (Req. 1)

Progress (5.4) Preservation (5.5) Values Stuck Det. Semantics

Fig. 10. Dependencies in the metatheory. We write “var” and “tv” to resp. abbreviate term and type variables.

is used in the proof of the lemma at the head. Solid arrows are dependencies in 𝜆𝑅𝐹 only. The chart
already shows that the metatheory of the refined calculus 𝜆𝑅𝐹 is much more complex that the one
of the unrefined system 𝜆𝐹 , as also shown by the summary of our mechanization (Table 1).

5.1 Denotational Soundness

Denotational soundness connects syntactic typing and subtyping with the type denotations (of Fig-
ure 9). For typing it states that if Γ ⊢ 𝑒 : 𝑡 , then when 𝑒 is closed by any closing substitution of Γ it
evaluates to a value that belongs in the denotation of the closed 𝑡 . For subtyping, if Γ ⊢ 𝑠 ⪯ 𝑡 , then
under all closing substitutions, the denotation of the former type is contained in the latter:

Theorem 5.1. (Denotational Soundness)
(1) If Γ⊢𝑒 :𝑡 and ⊢𝑤 Γ and 𝜃 ∈ JΓK then 𝜃 (𝑒) ↩→∗ 𝑣 ∈ J𝜃 (𝑡)K for some value 𝑣 .

(2) If Γ⊢𝑡1 ⪯ 𝑡2 and ⊢𝑤 Γ and Γ⊢𝑤 𝑡1 :𝑘1 and Γ⊢𝑤 𝑡2 :𝑘2 and 𝜃 ∈ JΓK then J𝜃 (𝑡1)K⊆ J𝜃 (𝑡2)K.

Theproof is bymutual inductionon the structure of the judgments Γ⊢𝑒 :𝑡 andΓ⊢𝑡1 ⪯ 𝑡2 respectively.
Our rule T-Var mentions selfification, so we use Lemma 5.2 for that case.

Lemma 5.2. (Selfified Denotations) If∅⊢𝑤 𝑡 :𝑘 ,∅⊢𝑒 :𝑡 , 𝑒 ↩→∗ 𝑣 for some 𝑣 ∈ J𝑡K then 𝑣 ∈ Jself (𝑡,𝑒,𝑘)K.

This lemma captures the intuition that if 𝑣 ∈ J𝑏{𝑥 :𝑝}K (i.e. if 𝑣 has base type𝑏 and 𝑝 [𝑣/𝑥] ↩→∗ true),
then we have 𝑣 ∈ J𝑏{𝑥 :𝑝∧𝑥 =𝑣}K as (𝑝∧𝑥 =𝑣) [𝑣/𝑥] certainly evaluates to true.

5.2 Type Safety

The type safety theorem states that a well-typed term does not get stuck: i.e. either evaluates to a
value or can step to another term (progress) of the same type (preservation).

Theorem 5.3. (Type Safety of 𝜆𝑅𝐹 and 𝜆𝐹 )
(1) (Type Safety) If∅⊢𝑒 :𝑡 and 𝑒 ↩→∗ 𝑒 ′, then 𝑒 ′ is a value or 𝑒 ′ ↩→𝑒 ′′ for some 𝑒 ′′.
(2) (No Error) If∅⊢𝑒 :𝑡 and 𝑒 ↩→∗ 𝑒 ′, then 𝑒 ′≠error.
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The No Error property explicitly states that well-typed terms cannot evaluate to the term error
(that encodes stuck terms) and is a direct implication of type safety.We prove type safety by induction
on the length of the sequence of steps 𝑒 ↩→∗ 𝑒 ′, using preservation and progress.
Progress The progress lemma says a well-typed term is a value or steps to some other term.

Lemma 5.4. (Progress) If∅⊢𝑒 :𝜏 , then 𝑒 is a value or 𝑒 ↩→𝑒 ′ for some 𝑒 ′.

The proof is by induction on the typing derivation using the primitives Requirement 1, that we
proved for our built-in primitives, and the inversion of typing lemma.
Preservation The preservation lemma states that typing is preserved by evaluation.

Lemma 5.5. (Preservation) If∅⊢𝑒 :𝜏 and 𝑒 ↩→𝑒 ′, then∅⊢𝑒 ′ :𝜏 .
The proof is by structural induction on the derivation of the typing judgment and implicitly uses

the inversion lemma. We use the determinism of the operational semantics (lemma 3.1) and the
canonical forms lemma to case split on 𝑒 to determine 𝑒 ′. The interesting cases are for T-App and
T-TApp that require a substitution Lemma 5.8. Next, let’s see the three main lemmas used in the
preservation and progress proofs.

5.3 Inversion of Typing Judgments

The region of Figure 10 labelled “Inversion” accounts for the fact that, due to subtyping chains, the
typing judgment in 𝜆𝑅𝐹 is not syntax-directed. First, we establish that subtyping is transitive:

Lemma 5.6. (Transitivity) If Γ⊢𝑤 𝑡1 :𝑘1, Γ⊢𝑤 𝑡3 :𝑘3, ⊢𝑤 Γ, Γ⊢𝑡1 ⪯ 𝑡2, Γ⊢𝑡2 ⪯ 𝑡3, then Γ⊢𝑡1 ⪯ 𝑡3.
The proof consists of a case-split on the possible rules for Γ⊢𝑡1 ⪯ 𝑡2 and Γ⊢𝑡2 ⪯ 𝑡3. When the last

rule used in the former is S-Wit and the latter is S-Bind, we require the substitution Lemma 5.8. As
Aydemir et al. [2005], we use the narrowing Lemma 5.10 for the transitivity for function types.
InvertingTyping Judgments Weuse the transitivity of subtyping to prove somenon-trivial lemmas
that let us “invert” the typing judgments to recover information about the underlying terms and
types. We describe the non-trivial case which pertains to type and value abstractions:

Lemma 5.7. (Inversion of T-Abs, T-TAbs)
(1) If Γ⊢ (𝜆𝑤.𝑒) :𝑥 :𝑡𝑥 →𝑡 and ⊢𝑤 Γ, then for all𝑦 ∉Γ,𝑦 :𝑡𝑥 ,Γ⊢𝑒 [𝑦/𝑤] :𝑡 [𝑦/𝑥].
(2) If Γ⊢ (Λ𝛼1 :𝑘1.𝑒) :∀𝛼 :𝑘.𝑡 and ⊢𝑤 Γ, then for all 𝛼 ′∉Γ, 𝛼 ′ :𝑘,Γ⊢𝑒 [𝛼 ′/𝛼1] :𝑡 [𝛼 ′/𝛼].
If Γ ⊢ (𝜆𝑤.𝑒) : 𝑥 :𝑡𝑥 →𝑡 , then we cannot directly invert the typing judgment to get a judgment

for the body 𝑒 of 𝜆𝑤.𝑒 . Perhaps the last rule used was T-Sub, and inversion only tells us that there
exists a type 𝑡1 such that Γ ⊢ (𝜆𝑤.𝑒) : 𝑡1 and Γ ⊢ 𝑡1 ⪯ 𝑥 :𝑡𝑥 → 𝑡 . Inverting again, we may in fact find a
chain of types 𝑡𝑖+1 ⪯ 𝑡𝑖 ⪯ ··· ⪯ 𝑡2 ⪯ 𝑡1 which can be arbitrarily long. But the proof tree must be finite
so eventually we find a type𝑤 :𝑠𝑤 → 𝑠 such that Γ ⊢ (𝜆𝑤.𝑒) :𝑤 :𝑠𝑤→𝑠 and Γ ⊢𝑤 :𝑠𝑤 → 𝑠 ⪯ 𝑥 :𝑡𝑥 → 𝑡

(by transitivity) and the last rule was T-Abs. Then inversion gives us that for any 𝑦 ∉ Γ we have
𝑦 :𝑠𝑤,Γ⊢𝑒 :𝑠 [𝑦/𝑤]. To get the desired typing judgment, we must use the narrowing Lemma 5.10 to
obtain𝑦 :𝑡𝑥 ,Γ⊢𝑒 :𝑠 [𝑦/𝑤]. Finally, we use T-Sub to derive𝑦 :𝑡𝑥 ,Γ⊢𝑒 :𝑡 [𝑦/𝑤].

5.4 Substitution Lemma

In 𝜆𝑅𝐹 , unlike unrefined calculi such as 𝜆𝐹 , typing and subtyping are mutual dependent. Due to
this dependency, both the substitution the weakening lemmas must now be proven in a mutually
recursive form:

Lemma 5.8. (Substitution)
(1) If Γ1,𝑥 :𝑡𝑥 ,Γ2 ⊢𝑠 ⪯ 𝑡 , ⊢𝑤 Γ2, and Γ2 ⊢𝑣𝑥 :𝑡𝑥 , then Γ1 [𝑣𝑥/𝑥],Γ2 ⊢𝑠 [𝑣𝑥/𝑥] ⪯ 𝑡 [𝑣𝑥/𝑥].
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(2) If Γ1,𝑥 :𝑡𝑥 ,Γ2 ⊢𝑒 :𝑡 , ⊢𝑤 Γ2, and Γ2 ⊢𝑣𝑥 :𝑡𝑥 , then Γ1 [𝑣𝑥/𝑥],Γ2 ⊢𝑒 [𝑣𝑥/𝑥] :𝑡 [𝑣𝑥/𝑥].
(3) If Γ1,𝛼 :𝑘,Γ2 ⊢𝑠 ⪯ 𝑡 , ⊢𝑤 Γ2, and Γ2 ⊢𝑤 𝑡𝛼 :𝑘 , then Γ1 [𝑡𝛼/𝛼],Γ2 ⊢𝑠 [𝑡𝛼/𝛼] ⪯ 𝑡 [𝑡𝛼/𝛼].
(4) If Γ1,𝛼 :𝑘,Γ2 ⊢𝑒 :𝑡 , ⊢𝑤 Γ2, and Γ2 ⊢𝑤 𝑡𝛼 :𝑘 , then Γ1 [𝑡𝛼/𝛼],Γ2 ⊢𝑒 [𝑡𝛼/𝛼] :𝑡 [𝑡𝛼/𝛼].

The proof goes by induction on the derivation trees. The main difficulty arises in substituting
some type 𝑡𝛼 for variable 𝛼 in Γ1,𝛼 :𝑘,Γ2 ⊢𝛼{𝑥1 :𝑝} ⪯𝛼{𝑥2 :𝑞} because 𝑡𝛼 must be strengthened by the
refinements 𝑝 and 𝑞 respectively. Because we encoded our typing rules using cofinite quantifica-
tion [Aydemir et al. 2008] the proof does not require a renaming lemma, but the rules that lookup
environments (rules T-Var andWF-Var) do need aweakening Lemma:

Lemma 5.9. (Weakening) If 𝑥,𝛼 ∉Γ1,Γ2, then

(1) if Γ1,Γ2 ⊢𝑒 :𝑡 then Γ1,𝑥 :𝑡𝑥 ,Γ2 ⊢𝑒 :𝑡 and Γ1,𝛼 :𝑘,Γ2 ⊢𝑒 :𝑡 .
(2) if Γ1,Γ2 ⊢𝑠 ⪯ 𝑡 then Γ1,𝑥 :𝑡𝑥 ,Γ2 ⊢𝑠 ⪯ 𝑡 and Γ1,𝛼 :𝑘,Γ2 ⊢𝑠 ⪯ 𝑡 .

The proof is by mutual induction on the derivation of the typing and subtyping judgments.

5.5 Narrowing

The narrowing lemma says that whenever we have a judgment where a binding 𝑥 :𝑡𝑥 appears in the
binding environment, we can replace 𝑡𝑥 by any subtype 𝑠𝑥 . The intuition here is that the judgment
holds under the replacement because we are making the context more specific.

Lemma 5.10. (Narrowing) If Γ2 ⊢𝑠𝑥 <:𝑡𝑥 , Γ2 ⊢𝑤 𝑠𝑥 :𝑘𝑥 , and ⊢𝑤 Γ2 then

(1) if Γ1,𝑥 :𝑡𝑥 ,Γ2 ⊢𝑤 𝑡 :𝑘 , then Γ1,𝑥 :𝑠𝑥 ,Γ2 ⊢𝑤 𝑡 :𝑘 .
(2) if Γ1,𝑥 :𝑡𝑥 ,Γ2 ⊢𝑡1 <:𝑡2, then Γ1,𝑥 :𝑠𝑥 ,Γ2 ⊢𝑡1 <:𝑡2.
(3) if Γ1,𝑥 :𝑡𝑥 ,Γ2 ⊢𝑒 :𝑡 , then Γ1,𝑥 :𝑠𝑥 ,Γ2 ⊢𝑒 :𝑡 .

The narrowing proof requires an exact typing Lemma 5.11 which says that both subtyping and
typing is preserved after selfification.

Lemma 5.11. (Exact Typing)
(1) If Γ⊢𝑒 :𝑡 , ⊢𝑤 Γ, Γ⊢𝑤 𝑡 :𝑘 , and Γ⊢𝑠 ⪯ 𝑡 , then Γ⊢self (𝑠,𝑣,𝑘) ⪯ self (𝑡,𝑣,𝑘).
(2) If Γ⊢𝑣 :𝑡 , ⊢𝑤 Γ, and Γ⊢𝑤 𝑡 :𝑘 , then Γ⊢𝑣 : self (𝑡,𝑣,𝑘).

6 LIQUIDHASKELL &REFINEDDATA PROPOSITIONS

In § 7 we present howwe proved 𝜆𝑅𝐹 soundness in LiqidHaskell. To do so, we developed refined
data propositions, a novel feature of LiqidHaskell that made such a meta-theoretic proof possible.

6.1 LiquidHaskell

LiqidHaskell’s core proof system is 𝜆𝑅𝐹 , that is, it is using the typing judgement presented in fig. 7
to check if a Haskell program satisfies its refinement type annotations. The expression language
checked by LiqidHaskell is GHC’s intermediate language (CoreSyn [Sulzmann et al. 2007]) which
is a superset of𝜆𝑅𝐹 that also includes literals, datatypes, and coercions. Thus, LiqidHaskell’s typing
judgement is extended to include these constructs. To guess the unknown types of fig. 7 (i.e. in the
rules T-Sub and T-Let) and make the typing judgment algorithmic LiqidHaskell implements the
refinement type inference algorithm of liquid types [Rondon et al. 2008]. To check the implications
LiqidHaskell uses the I-Log rule of § 4.4.2 which are automatically discharged by an SMT solver.

LiquidHaskell as a Theorem Prover. Equipped with the SMT solver, LiqidHaskell can be used
to prove theorems over theories known to the SMT solver. For example, that addition over integers
is associative and that for every integer there exists a larger one, as encoded by the below functions:
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assoc :: x:Int → y:Int → {v:() | x + y == y + x }

assoc _ _ = ()

exLg :: x:Int → (y::Int,{v:() | y > x })

exLg x = (x+1, ())

These definitions use lambda abstraction and dependent pairs to respectively encode the universal
and existential quantifiers. To encode logical terms, such as y > x, they refine the unit type with
such terms. Building upon this idea, LiqidHaskell has been extensively used to prove theorems,
using recursive Haskell definitions to encode inductive proofs and refinement reflection [Vazou
et al. 2018] to allow user-defined terminating functions into the refinement logic. Yet, the proving
power of LiqidHaskellwas limited because only provably terminating functions can be used in the
refinement logic and the proofs were implicitly performed by the SMT solver. Thus, the programmer
could not inspect the proof terms.

6.2 Refined Data Propositions

Refined data propositions encode Coq-style inductive predicates to permit constructive reasoning
about potentially non-terminating properties, as required for meta-theoretic proofs.
Refined data propositions encode inductive predicates in LiqidHaskell by refining Haskell’s

data types, allowing the programmer to write plain Haskell functions to provide constructive proofs
for user-defined propositions. Here, for exposition, we present the four steps we followed in the
mechanization of 𝜆𝑅𝐹 to define the “has-type” proposition and then use it to type the primitive one.
Step 1: Reifying Propositions as Data Our first step is to represent the propositions of interest
as plain Haskell data. For example, we can define the following types (suffixed Pr for “proposition”):

data HasTyPr = HasTyPr Env Expr Type

data IsSubTyPr = IsSubTyPr Env Type Type

Thus, HasTyPr 𝛾 e t and IsSubTyPr 𝛾 s t resp. represent the propositions 𝛾 ⊢𝑒 :𝑡 and𝛾 ⊢𝑠 ⪯ 𝑡 .
Step 2: Reifying Evidence as Data Next, we reify evidence, i.e. derivation trees as data by defining
Haskell data types with a single constructor per derivation rule. For example, we define the data type
HasTyEv to encode the typing rules of Figure 7, with constructors that match the names of each rule.
data HasTyEv where

TPrim :: Env → Prim → HasTyEv

TSub :: Env → Expr → Type → Type → HasTyEv → IsSubTyEv → HasTyEv

...

Using these data one can construct derivation trees. For instance, TPrim Empty (PInt 1)::
HasTyEv is the tree that types the primitive one under the empty environment.
Step 3: Relating Evidence to its Propositions Next, we specify the relationship between the
evidence and the proposition that it establishes, via a refinement-level uninterpreted function:
measure hasTyEvPr :: HasTyEv → HasTyPr

measure isSubTyEvPr :: IsSubTyEv → IsSubTyPr

The above signatures declare that hasTyEvPr (resp. isSubTyEvPr) is a refinement-level function
that maps has-type (resp. is-subtype) evidence to its corresponding proposition. We can now use
these uninterpreted functions to define type aliases that denote well-formed evidence that establishes
a proposition. For example, consider the (refined) type aliases
type HasTy 𝛾 e t = {ev:HasTyEv | hasTyEvPr ev == HasTyPr 𝛾 e t }

type IsSubTy 𝛾 s t = {ev:IsSubTyEv | isSubTyEvPr ev == IsSubTyPr 𝛾 s t }

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 70. Publication date: January 2024.



Mechanizing Refinement Types 70:21

The definition stipulates that the type HasTy 𝛾 e t is inhabited by evidence (of type HasTyEv)
that establishes the typing proposition HasTyPr 𝛾 e t. Similarly IsSubTy 𝛾 s t is inhabited by
evidence (of type IsSubTyEv) that establishes the subtyping proposition IsSubTyPr 𝛾 s t. Note
that the first three steps have only defined separate data types for propositions and evidence, and
specified the relationship between them via uninterpreted functions in the refinement logic.

Step 4: Refining Evidence to Establish Propositions Finally, we implement the relationship
between evidence and propositions refining the types of the evidence data constructors (rules) with
pre-conditions that require the rules’ premises and post-conditions that ensure the rules’ conclusions.
For example, we connect the evidence and proposition for the typing relation by refining the data
constructors for HasTyEv using their respecting typing rule from Figure 7.

data HasTyEv where

TPrim :: 𝛾:Env → c:Prim → HasTy 𝛾 (Prim c) (ty c)

TSub :: 𝛾:Env → e:Expr → s:Type → t:Type

→ HasTy 𝛾 e s → IsSubTy 𝛾 s t → HasTy 𝛾 e t

...

The constructors TPrim and TSub respectively encode the rules T-Prim and T-Sub (with well-
formedness elided for simplicity). The refinements on the input types, which encode the premises
of the rules, are checked whenever these constructors are used. The refinement on the output type
(being evidence of a specific proposition) is axiomatized to encode the conclusion of the rules. For
example, the type for TSub says that “for all 𝛾,𝑒,𝑠,𝑡 , given evidence that 𝛾 ⊢ 𝑒 : 𝑠 and 𝛾 ⊢ 𝑠 ⪯ 𝑡”, the
constructor returns “evidence that𝛾 ⊢𝑒 :𝑡”.

Implementation of Data Propositions Data propositions are a novel feature required to encode
inductive propositions in the mechanization of 𝜆𝑅𝐹 . (Parker et al. [2019] developed a LiqidHaskell
metatheoretic proof but before data propositions and thus had to axiomatize a terminating eval-
uation relation; see § 9.) Refined data propositions are implemented as part of LiqidHaskell’s
existing refined data types that already supported subtyping on constructor arguments using variant
and contravariant rules, as described but not formalized in [Jhala and Vazou 2021]. The essential
extension to support data propositions is that by refining the output types of inductive data types,
LiqidHaskell can support constructive derivation-tree-style proofs. To use this feature in practice,
we had to extend the refinement logic of LiqidHaskell to use existing SMT support to make data
constructors injective, i.e. if𝐶 is a constructor then∀𝑥,𝑦.𝐶 (𝑥)=𝐶 (𝑦)⇒𝑥 =𝑦. Thus, refined data types
and injectivity are the two required components to implement data propositions.

7 LIQUIDHASKELLMECHANIZATION

Wemechanized type safety (Theorem 5.3) of 𝜆𝑅𝐹 in both Coq 8.15.1 and LiqidHaskell 8.10.7.1
(submitted as anonymous supplementary material). In LiqidHaskell we use refined data proposi-
tions (§ 6) to specify the static (e.g. typing, subtyping, well-formedness) and dynamic (i.e. small-step
transitions and their closure) semantics of 𝜆𝑅𝐹 . Other that the development of data propositions, we
extended LiqidHaskell with two more features during the development of this proof. First, we
implemented an interpreter that critically dropped the verification time from 10 hours to only 29
minutes (§7.3). Second, we implemented a (Coq-style) strictly-positive-occurrence checker to ensure
data propositions are well defined, since early versions of our proof used negative occurrences.

The LiqidHaskell mechanization is simplified by SMT-automation (§ 7.1) and consists of proofs
implemented as recursive functions that construct evidence to establish propositions by induction
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(§ 7.2). Note that while Haskell types are inhabited by diverging ⊥ values, LiqidHaskell’s to-
tality, termination, and type checks ensure that all cases are handled, the induction (recursion) is
well-founded, and that the proofs (programs) indeed inhabit the propositions (types).

7.1 SMT Solvers, Arithmetic, and Set Theory

The most tedious part in mechanization of metatheories is the establishment of invariants about
variables, for example uniqueness and freshness. LiqidHaskell offers a built-in, SMT automated
support for the theory of sets, which simplifies establishing such invariants.
Intrinsic Verification LiqidHaskell embeds the functions of the standard Data.SetHaskell
library as SMT set operators. Given a Haskell function, e.g. the set of free variables in an expression,
this embedding, combined with SMT’s support for set theory, lets LiqidHaskell prove properties
about free variables “for free”. For example, consider the function subFV x vx ewhich substitutes
the variable xwith vx in e. The refinement type of subFV describes the free variables of the result.
subFV :: x:VName → vx:{Expr | isVal vx } → e:Expr

→ {e':Expr | fv e' ⊆ (fv vx ∪ (fv e \ x)) && (isVal e ⇒ isVal e')}

subFV x vx (EVar y) = if x == y then vx else EVar y

subFV x vx (ELam e) = ELam (subFV x vx e)

subFV x vx (EApp e e') = EApp (subFV x vx e) (subFV x vx e')

... -- other cases

The refinement type specifies that the free variables after substitution is a subset of the free vari-
ables in the two argument expressions, excluding x, i.e. fv(𝑒 [𝑣𝑥/𝑥]) ⊆ fv(𝑣𝑥 )∪ (fv(𝑒) \{𝑥}). This
specification is proved intrinsically, i.e. the definition of subFV is the proof (no user aid is required)
and, importantly, the specification is automatically established each time the function subFV is
called without any need for explicit hints. The specification of subFV above shows another example
of SMT-based proof simplification. It intrinsically proves that the value property is preserved by
substitution, using the Haskell boolean function isVal that defines when an expression is a value.

7.2 Inductive Proofs as Recursive Functions

The majority of our proofs are by induction on derivations. These proofs are recursive Haskell
functions that operate over refined data propositions. LiqidHaskell ensures the proofs are valid by
checking that they are inductive (i.e. the recursion is well-founded), handle all cases (i.e. the function
is total), and establish the desired properties (i.e.witnesses the appropriate proposition).
Preservation (Lemma 5.5) relates the HasTy data proposition of § 6 with a Step data proposition
that encodes Figure 5 and is proved by induction on the type derivation tree. Below we present a
snippet of the proof, where the subtyping case is by induction while the primitive case is impossible:
preservation :: e:Expr → t:Type → e':Expr → HasTy Empty e t

→ Step e e' → HasTy Empty e' t

preservation _e _t e' (TSub Empty e t' t e_has_t' t'_sub_t) e_step_e'

= TSub Empty e' t' t (preservation e t' e' e_has_t' e_step_e') t'_sub_t

preservation e _t e' (TPrim _ _) step

= impossible "value" ? lemValStep e e' step -- 𝑒 ↩→𝑒 ′⇒¬(isVal 𝑒)
...

impossible :: {v:String | false} → a

lemValStep :: e:Expr → e':Expr → Step e e' → {¬(isVal e)}
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In the TSub casewenote that LiqidHaskell knows that the argument _e is equal to the subtyping
parameter e. The termination checker ensures the inductive call happens on a smaller derivation
subtree. The TPrim case is by contradiction since primitives cannot step: we proved values cannot
step in the lemValStep lemma, which is combined via the (?) combinator of type a → b → awith
the fact that e is a value to allow the call of the false-precondition impossible.
LiqidHaskell’s totality checker ensures all cases of HasTyEv are covered and the termination

checker ensures the proof is well-founded.

7.3 Quantitative Results

Weprovide amechanically checked proof of the type safety in § 5, that only assumes the requirements
1 and 2. Concretely, we assumed the primitives Requirement 1 for some constants of 𝜆𝑅𝐹 because it
was too strenuous tomechanically provewithout interactive aid. In LiqidHaskell type denotations
(of Figure 9) cannot be currently encoded: since they include ∀-quantification they could only be
encoded as data propositions, but the strictly-positive-occurrence checker rejects the definition of the
function denotation. Due to this limitation, we can neither define the denotational implementation
of the implication (§ 4.4.3) nor prove the denotational soundness (Theorem 5.1).

Representing Binders One main challenge in the mechanized metatheory is the syntactic rep-
resentation of variables and binders [Aydemir et al. 2005]. The named representation has severe
difficulties because of variable capturing substitutions and the nameless (a.k.a. de Bruijn) requires
heavy index shifting. The variable representation of 𝜆𝑅𝐹 is locally nameless representation [Aydemir
et al. 2008; Pollack 1993], where free variables are named, but bound variables are represented by
deBruijn indices. Our mechanization still resembles the paper and pencil proofs (performed before
mechanization), yet it clearly addresses the following two problems with named bound variables.
First, when different refinements are strengthened (as in Figure 5) the variable capturing problem
reappears because we are substituting underneath a binder. Second, subtyping usually permits
alpha-renaming of binders, which breaks a required invariant that each 𝜆𝑅𝐹 derivation tree is a valid
𝜆𝐹 tree after erasure.

Table 1 summarizes the development of ourmetatheory, whichwas checked using LiqidHaskell
8.10.7.1 and a Lenovo ThinkPad T15p laptopwith an Intel Core i7-11800H processor. Ourmechanized
proofs are substantial. The entire LiqidHaskell development comprises over 12,800 lines across
about 35 files. Currently, thewhole LiqidHaskell proof can be checked in 29minutes, whichmakes
interactive development difficult, especially compared to the Coq proof (§ 8) that is checked in about
60 seconds. While incremental modular checking provides a modicum of interactivity, improving
the ergonomics of LiqidHaskell, i.e. verification time and actionable error messages, remains an
important direction for future work.

8 COQMECHANIZATION

Our Coqmechanization proves both type safety and denotation soundness, i.e. all the statements
of § 5 and serves as a comparison for the metatheoretical development abilities of the two theorem
provers. In Coq, Req. 1 is proved (using Coq’s interactive development) and type denotations (of
Figure 9) are defined as recursive functions using Equations [Sozeau and Mangin 2019], which make
both the definition the denotational implementation of the implication (§ 4.4.3) and the proof the
denotational soundness (Theorem 5.1) possible. To fairly compare the two developments in terms
of effort and ergonomics, we did not use external Coq libraries because no such libraries exist yet
for LiqidHaskell. Vazou et al. [2017] previously compared LiqidHaskell and Coq as theorem

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 70. Publication date: January 2024.



70:24 Michael H. Borkowski, Niki Vazou, and Ranjit Jhala

LiqidHaskell Mechanization CoqMechanization
Subject Files Time (m) Spec Proof Files Spec Proof
Definitions 6 1 1805 374 7 941 190
Basic Properties 8 4 646 2117 8 1201 2360
𝜆𝐹 Soundness 4 3 138 685 4 173 773
Weakening 4 1 379 467 4 110 568
Substitution 4 7 458 846 4 158 859
Exact Typing 2 4 70 230 2 33 182
Narrowing 1 1 88 166 1 54 262
Inversion 1 1 124 206 1 57 258
Primitives 3 4 120 277 3 89 508
𝜆𝑅𝐹 Soundness 1 1 14 181 1 12 233
Denotational Soundness - - - - 13 815 3010

Total 35 29 3842 5549 49 3643 9203
Table 1. Quantitative mechanization details. We split each development into sets of modules pertaining to
regions of Figure 10 and for each we count lines of specification (definitions, lemma statements) and of proof.

provers, but their mechanizations were an order of magnitude smaller than ours and did not use data
propositions (§ 6), which permit constructive LiqidHaskell proofs.

Coq vs. LiquidHaskell Coq has a tiny TCB and strong foundational mechanized soundness
guarantees [Sozeau et al. 2020]. In contrast, LiqidHaskell trusts the Haskell compiler (GHC), the
SMT solver (Z3), and its constraint generation rules which have not been formalized. This work, 𝜆𝑅𝐹 ,
serves precisely that purpose: by formalizing andmechanizing a significant subset of LiqidHaskell,
leaving out literals, casts, and data types. As far as the user experience is concerned, Coq metatheo-
retical developments aremuch faster to check, whichwas expected since LiqidHaskell comeswith
expensive inference, and can be aided by relevant libraries. The two tools come with different kinds
of automation: tactics vs. SMT, which we found to be useful in complementary parts of the proofs,
pointing the way to possible improvements for both verification styles. Finally, LiqidHaskell
facilitates reasoning over mutually defined and partial functions.

Negative Occurrences and Coq’s Equations Our original LiqidHaskell mechanization defined
denotations as refined data propositions and proved denotational soundness. Though, we realized
that the definition of the function type denotation has a negative occurrence and permitting negative
occurrences can, in general, lead to unsoundness [Coquand and Paulin 1990]. Our mechanization
is the first big-scale user of LiqidHaskell’s data propositions thus it was not surprising that it
revealed this potential unsoundness. To remove this source of unsoundness in LiqidHaskell,
we implemented a Coq-style positivity checker that unsurprisingly rejected the type denotation
definitions. A similar challenge appears in the proof of strong normalization of the simply-type
lambda calculus that because of negative occurrences cannot use inductive propositions [Pierce et al.
2022]. There, the solution is to use a recursive function expr → type → Prop because a definition
doesn’t need to be computable. In our Coqmechanization, we followed a similar solution, but since
our definitionwas not structurally recursive andwas needed for the proofs, we used the full power of
Coq’s Equations [Sozeau andMangin 2019] to define the type denotations. Unfortunately, a similar
approach cannot currently carry over to LiqidHaskell because all Haskell functions must be
computable and all LiqidHaskell annotations must be decidable. Therefore, quantifiers are neither
allowed on the right-hand side of Haskell definitions nor in the refinements.

Tactics and Automation Coq’s tactics and automation often permit shorter proofs as lemmas and
constructors can be used with the apply tactic without writing out all arguments. For example, in
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LiqidHaskell safety (thm. 5.3) is encoded using Haskell’s Either for disjunction and dependent
pairs for existentials. (Steps is defined, using data propositions, as the closure of Step.)
safety :: e0:Expr → t:Type → e:Expr → HasTy Empty e0 t → Steps e0 e

→ Either {isVal e} (e𝑖::Expr, Step e e𝑖)

safety _e0 t _e e0_has_t e0_evals_e = case e0_evals_e of

Refl e0 → progress e0 t e0_has_t -- 𝑒0=𝑒

AddStep e0 e1 e0_step_e1 e e1_eval_e → -- 𝑒0 ↩→𝑒1 ↩→∗ 𝑒

safety e1 t e (preservation e0 t e0_has_t e1 e0_step_e1) e1_eval_e

The reflexive case is proved by progress. In the inductive case the evaluation sequence is 𝑒0 ↩→
𝑒1 ↩→∗ 𝑒 and the proof goes by induction, using preservation to ensure that 𝑒1 is typed. In Coq safety
is proved without any of the three fully applied calls above:
Theorem safety : forall (e0 e:expr) (t:type),

Steps e0 e → HasTy Empty e0 t → isVal e \/ exists e𝑖, Steps e e𝑖.

Proof. intros; induction H.

- (* Refl *) apply progress with t; assumption.

- (* Add *) apply IHSteps; apply preservation with e; assumption. Qed.

Mutual Recursion LiqidHaskell makes it easy to define and work with mutually recursive data
types, such as our typing and subtyping judgments, and to prove mutually inductive lemmas. Mutu-
ally recursive types are not a natural fit for Coq: the automatically generated induction principles do
not work, so we need to use the Scheme keyword to generate suitable principles. Theorems involving
these types cannot be broken up into separate lemmas for each type involved. Rather, one combined
statement must be given, which is difficult to use in the rewrite tactic.
Another weakness of Coq is that all information about the hypothesis is lost during the induc-

tion tactic, so the normal structural induction tactic only works when a judgment contains no
information, i.e. the data constructor is instantiated solely with universally quantified variables. For
instance, in the proof of the weakening Lemma 5.9, to do structural induction on HasTy (concat
g g')e twemust introduce a universally quantified variable g0 and strengthen the theoremwith
the hypothesis g0 = concat g g'. While the standard library contains an “experimental” tactic
dependent induction, we also need to work with the special mutual induction principles that we
generate for our types, so we have to directly instantiate the principle with a strengthened, complex
hypothesis. By contrast, in LiqidHaskell we can state two separate mutually recursive lemma
functions for weakening: one for typing and one for subtyping. Then we may call either lemma
in their own proofs on any smaller instance of the typing (resp. subtyping) judgment. In practice,
developments inCoq sidestep someof these issues by collapsing the language of terms, types, etc. into
a single inductive data type. This approach has the advantage of reducing the number of substitution
operations, but allows highly ungrammatical combinations like App Bool False into our syntax.
We could still use this approach combined with a pre-term encoding common in Coq developments,
but we preferred to keep a closer comparison to the LiqidHaskell mechanization.
Partial Functions LiqidHaskell facilitates the definition of partial Haskell functions and proves
totality with respect to the refined types, usually automatically. For instance, our syntax does not
contain an expliciterror value, sowe onlywant the function𝛿 (𝑐,𝑣) to be definedwhere𝑐 𝑣 can step in
our semantics. This is straightforward in LiqidHaskell: we define a predicate isCompat :: Prim
→ Value → Bool and refine the input types of 𝛿 to satisfy isCompat. In Coq a more roundabout
approach is needed: we have to define isCompat as an inductive type and include this object as an
explicit argument to our 𝛿 function. However, this makes it harder to prove the determinism of our
semantics due to the dependence on the proof object. One solutionwould be to define a partial version
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of 𝛿 with type Prim → Expr → option Expr and prove the two functions always agree regardless
of proof object, e.g. using subset types; but since each value comes wrapped with a term-level proof
object, agreement proofs would require a Proof Irrelevance axiom.

9 RELATEDWORK

We discuss the most closely related work on the metatheory of unrefined and refined type systems.
Hybrid & Contract Systems Flanagan [2006] formalizes on paper a monomorphic lambda calculus
with refinement types that differs from our 𝜆𝑅𝐹 in twoways. First, in Flanagan [2006]’s type checking
is hybrid: the developed system is undecidable and inserts runtime casts when subtyping cannot be
statically decided. Second, the original system lacks polymorphism. Sekiyama et al. [2017] extended
hybrid types with polymorphism, but unlike 𝜆𝑅𝐹 , their system does not support semantic subtyping.
For example, consider a divide by zero-error. The refined types for div and 0 could be given by
div ::Int→Int{𝑛 :𝑛≠0}→Int and 0 ::Int{𝑛 :𝑛=0}. This system will compile div 1 0 by inserting
a cast on 0: ⟨Int{𝑛 :𝑛=0}⇒Int{𝑛 :𝑛≠0}⟩, causing a definite runtime failure that could have easily
been prevented statically. Having removed semantic subtyping, the metatheory of Sekiyama et al.
[2017] is highly simplified. Static refinement type systems (as summarized by Jhala and Vazou [2021])
usually restrict the definition of predicates to quantifier-free first-order formulae that can be decided
by SMT solvers. This restriction is not preserved by evaluation that can substitute variables with any
value, thus allowing expressions that cannot be encoded in decidable logics, like lambdas, to seep into
thepredicates of types. In contrast,weallowpredicates tobe any language term (including lambdas) to
prove soundness via preservation and progress: ourmeta-theoretical results trivially apply to systems
that, for efficiency of implementation, restrict their source languages. Finally, none of the above
systems (hybrid, contracts or static refinement types) comewith amachine checked soundness proof.
Semantic Subtyping Semantic subtyping is not a unique feature of refinement types. For example,
Frischet al. [2002]use the set theoreticmodelsof types todecide subtyping.CastagnaandFrisch [2005]
present an algorithm that decides semantic subtyping for a core calculus with functional types. Like
𝜆𝑅𝐹 , Castagna and Frisch [2005] introduce a denotational interpretation of types to break the circular-
ity between the typing and subtyping relations. Unlike𝜆𝑅𝐹 , their systemdoes not have polymorphism
and, crucially, has nonotion of dependency (no refinement type-style binder of arguments).Moreover,
their subtyping algorithm is different than our refinement based algorithm: it is neither type directed
nor efficient (i.e. it requires backtracking), and cannot be automated by an external SMT solver.
Mechanizations of Refinement Types Lehmann and Tanter [2016]’s Coq formalization of a
monomorphic, refined calculus differs from 𝜆𝑅𝐹 in two ways. First, their axiomatized implication,
which is similar to our implication interface, allows them to restrict the language of refinements to
decidable logics but provides no formal connection between subtyping and evaluation. Instead, we
also provide the denotational implementation of the implication interface, thus establish denotation
soundness. Second, 𝜆𝑅𝐹 includes polymorphism, existentials, and selfification which are critical
for context-sensitive refinement typing, but make the metatheory more challenging. Hamza et al.
[2019] present System FR, a polymorphic, refined language with a mechanized metatheory of about
30K lines of Coq. Compared to our system, their notion of subtyping is not semantic, but relies
on a reducibility relation. For example, even though System FR will deduce that Pos is a subtype
of Int, it will fail to derive that Int→Pos is subtype of Pos→Int as reduction-based subtyping
cannot reason about contra-variance. Because of this more restrictive notion of subtyping, their
mechanization requires neither the indirection of denotational soundness nor an implication proving
oracle. Further, System FR’s support for polymorphism is limited in that it disallows refinements
on type variables, thereby precluding many practically useful specifications. Recently, Chen [2022]
formalized a refinement type system as an embedding of refinement types in Agda. This system is
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verified in a few thousand lines of Agda. This formalism differs significantly from ours in that as
an embedding it is built on top of a rich theorem prover and cannot be used to refine some existing
programming language. Further, it does not support higher-order functions, polymorphism, semantic
subtyping, neither be automated by an external solver since soundness reduces to Agda’s soundness.
Finally, Ghalayini and Krishnaswami [2023] mechanize refinement types with explicit proof terms
in 15K lines of Lean code. They use a categorical, denotational semantics soundness statement, but
their calculus by design supports neither semantic subtyping nor polymorphism.
Metatheory in LiquidHaskell LWeb [Parker et al. 2019] also used LiqidHaskell to prove
metatheory, the non-interference of 𝜆LWeb, a core calculus that extends the LIO formalism with
database access. The LWeb proof did not use refined data propositions, which were not present at
development time, and thus it has two major weaknesses compared to our present development.
First, LWeb assumes termination of 𝜆LWeb’s evaluation function; without refined data propositions
metatheory can be developed only over terminating functions. This was not a critical limitation since
non-interference was only proved for terminating programs. However, in our proof the requirement
that evaluation of 𝜆𝑅𝐹 terminates would be too strict. In our encoding with refined data propositions
such an assumption was not required. Second, the LWeb development is not constructive: the struc-
ture of an assumed evaluation tree is logically inspected instead of the more natural case splitting
permitted only with refined data propositions. This constructive way to develop metatheories is
more compact (e.g. there is no need to logically inspect derivation trees) and akin to the standard
meta-theoretic developments of constructive tools like Coq and Isabelle.

10 CONCLUSIONS& FUTUREWORK

We presented and formalized, for the first time, the soundness of 𝜆𝑅𝐹 , a refinement calculus with
semantic subtyping, existential types, and parametric polymorphism, which are critical for practical
refinement typing. Our metatheory is mechanized in both Coq and LiqidHaskell, the latter using
the novel feature of refined data propositions to reify derivations as (refined) Haskell datatypes,
using SMT to automate invariants about variables.

While our proof canbemechanized in other proof assistants likeAgda [Norell 2007], Isabelle [Nip-
kowet al. 2002], Beluga [Pientka 2010],Dafny [Leino 2010], or F* [Martínez et al. 2019], our goal here
is not to compare LiqidHaskell against every system. Instead, our primary contribution is to, for the
first time, establish the soundness of the combination of features critical for practical refinement typing
and show that such a proof can bemechanized as a plain programwith refinement types. Looking
ahead, we envision two lines of work on mechanizing metatheory of andwith refinement types.
1.Mechanization ofRefinements 𝜆𝑅𝐹 covers a crucial but small fragment of the features ofmodern
refinement type checkers. The immediate next step is to extend the language to include literals, casts,
anddata types, thus covering allGHC’s core calculus.Next,𝜆𝑅𝐹 can be extended tomore sophisticated
features of refinement types, such as abstract and bounded refinements and refinement reflection.
Similarly, our current work axiomatizes the requirements of the semantic implication checker (i.e.
SMT solver). It would be interesting to implement a solver and verify that it satisfies that contract,
or alternatively, show how proof certificates [Necula 1997] could be used in place of such axioms.
2.MechanizationwithRefinements While this work shows that non-trivial meta-theoretic proofs
are possiblewith SMT-based refinement types, our experience is that much remains to make such
developments pleasant. For example, programming would be far more convenient with support
for automatically splitting cases or filling in holes as done in Agda [Norell 2007] and envisioned by
Redmond et al. [2021]. Similarly, when a proof fails, the user has little choice but to think really hard
about the internal proof state and what extra lemmas are needed to prove their goal. Finally, the
stately pace of verification — 9400 lines across 35 files take about 30 minutes — hinders interactive
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development. Thus, rapid incremental checking, lightweight synthesis, and actionable errormessages
would go a long way towards improving the ergonomics of verification, and hence remain important
directions for future work.

11 DATAAVAILABILITY STATEMENT

The source code for our mechanizations in Coq and LiqidHaskell, together with instructions on
how to replicate the results, are available on Zenodo [Borkowski et al. 2023a]. Additionally, a virtual
appliance for Oracle VM VirtualBox is available on Zendo [Borkowski et al. 2023b] to assist with
replication.
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