Research Statement

Michael H. Borkowski

My research goal is to develop software verification techniques to make correct and performant
software systems easier to write and to understand, as well as having stronger theoretical soundness
guarantees. Today, correctness and performance are orthogonal goals for software: the most
verified software is not the fastest. For instance, a verified list algorithm may use linked lists for
simplicity. Verified compilers like Compcert (a C compiler) do not perform all the optimizations
of other compilers. The functional programming language Haskell is not known for fast code, but
high-performance coding is possible by sidestepping the safety guarantees of the type system and
directly using primitives types exposed by the compiler. Haskell supports parallel programming,
but its lazy semantics make it difficult to reason about the runtime behavior of a program.

As I discuss below, in the future, I envision that programmers will not have to make such a
sharp tradeoff between performance and correctness. Additionally, I envision that software ver-
ification techniques can find a place in undergraduate instruction to interactively help students
understand the code they write and understand mathematics proofs, as well as the connections
between key ideas like induction and recursion.

Metatheory of Refinement Types Refinements constrain types with logical predicates to
specify new concepts. For example, the refinement type Pos := Int{v : 0 < v} describes positive
integers and Nat := Int{v : 0 < v} specifies natural numbers. Refinements on types have been
successfully used in the past to define many sophisticated concepts, such as security policies and
resource constraints, that can then be verified in programs developed in various programming
languages like Haskell] Racket?] and Rustf]

In my PhD work, I presentedﬂ [1] Agr, a lambda calculus with a refinement type system that
combines semantic subtyping (logical implication of refinements, as opposed to a strict syntactic
definition) with refined polymorphic type variables. This was the first system to be formalized
with proofs of soundness that combined both these features with refinement types. I mechanized
this proof both in Coq, which has stronger soundness guarantees, and also in LiquidHaskell, which
showed the feasibility of a large metatheoretic formalization as a refined Haskell program without
a specialized proof assistant.

Future Work

Verification of Parallel Code There is often a large gap between work on software correctness
and software performance, and thus far these have generally been treated as orthogonal goals. My

'https://ucsd-progsys.github.io/liquidhaskell/
’https://blog.racket-lang.org/2017/11/adding-refinement-types.html
3https://flux-rs.github.io/flux/

‘https://arxiv.org/abs/2207.05617


https://ucsd-progsys.github.io/liquidhaskell/
https://blog.racket-lang.org/2017/11/adding-refinement-types.html
https://flux-rs.github.io/flux/
https://arxiv.org/abs/2207.05617

collaborators and I envision that to achieve a combination of high-performance and high-assurance
through formal verification, the path of least resistance is a strict, functional, programming style
with linear types. A linear type system allows us to enforce that a function argument must be
used exactly once, which can provide assurances of memory safety by preventing situations such
as more than one thread having access to the same shared area of memory.

We believe in the combination of strict functional programming with linear types for two rea-
sons: First, performant software necessarily implies parallel software on any modern architecture.
Linear types, available in Haskell (as a language extension in GHC 9), are uniquely positioned
to provide guarantees about resource usage that rule out data races, while placing only a light
burden on the programmer. Second, automation in verification is most advanced for functional
representations, as in systems like LiquidHaskell and Agda.

Our work on this project is ongoing. The need for case studies in verified algorithms from dif-
ferent domains presents the opportunity to carve out several research projects for undergraduates.

Verification to Teach Functional Programming The work above has inspired me to
investigate in the future how proof assistants can help undergraduate students of mathematics
and computer science learn both formal proof and difficult concepts like induction and recursion.
Unfortunately, most proof assistants are difficult to use and have a learning curve. Using Coq
to prove a simple fact like “if x < y then x +1 < y + 1”7 requires looking up and piecing
together multiple lemmas from the standard library, the names of which are still shifting over
time. LiquidHaskell includes annotations on Haskell code only, and no tactics, which lessens the
learning curve but it does not provide the ergonomics of immediate, interactive feedback.

My future work in this direction will center around what kind of tool or environment within
which LiquidHaskell could be situated to provide immediate, interactive feedback with minimal
cognitive overhead. Also, I intend to investigate what teaching methods could be designed and
what tools could be built to relate key concepts of programming and discrete mathematics. For
instance, recursive programming and inductive proofs are taught to first and second-year students
in entirely different courses but are closely related conceptually. But the correctness of a recursively
defined algorithm is argued inductively. And a (constructive) inductive proof of proposition P can
be seen as a recursively defined function for transforming a proof of P(n) into a proof of P(n+1).

These lines of investigation present many opportunities to involve undergraduates directly in
research. A project along these lines would involve both empirical components such as user studies
and engineering components such as building tools in the form of IDE extensions.

References

1. Michael H. Borkowski, Niki Vazou, and Ranjit Jhala. 2024. Mechanizing Refinement Types.
To appear in 51st ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2024), January 17-19, 2024, London, United Kingdom.



